Home » Java » Core Java » How to use Java 8 Functional Programming to Generate an Alphabetic Sequence

About Lukas Eder

Lukas Eder
Lukas is a Java and SQL enthusiast developer. He created the Data Geekery GmbH. He is the creator of jOOQ, a comprehensive SQL library for Java, and he is blogging mostly about these three topics: Java, SQL and jOOQ.

How to use Java 8 Functional Programming to Generate an Alphabetic Sequence

I’ve stumbled upon an interesting Stack Overflow question by user “mip”. The question was:

I’m looking for a way of generating an alphabetic sequence:

A, B, C, ..., Z, AA, AB, AC, ..., ZZ.

This can be quickly recognised as the headings of an Excel spreadsheet, which does precisely that:


So far, none of the answers employed any Java 8 functional programming, which I accepted as a challenge. We’re going to use jOOλ, because the Java 8 Stream API does not offer enough functionality for this task.

jool-black But first, let’s decompose the algorithm in a functional way. What we need are these components:

  1. A (reproducible) representation of the alphabet
  2. An upper bound, i.e. how many letters we want to produce. The requested sequence goes to ZZ, which means the upper bound would be 2
  3. A way to combine each letter of the alphabet with the previously generated combined letters in a cartesian product

Let’s look into some code:

1. Generating the alphabet

We could be writing the alphabet like this:

List<String> alphabet = Arrays.asList("A", "B", ..., "Z");

but that would be lame. Let’s generate it instead, using jOOλ:

List<String> alphabet = Seq
    .rangeClosed('A', 'Z')

The above generates a “closed” range (Java-8-Stream-speak for a range with inclusive upper bound) of characters between A and Z, maps characters to strings and collects them into a list.

So far so good. Now:

2. Using an upper bound

The requested sequence of characters includes:

A .. Z, AA, AB, .. ZZ

But we could easily imagine to extend this requirement generally to produce the following, or even more.

A .. Z, AA, AB, .. ZZ, AAA, AAB, .. ZZZ

For this, we’ll use again rangeClosed():

// 1 = A .. Z, 2 = AA .. ZZ, 3 = AAA .. ZZZ
Seq.rangeClosed(1, 2)
   .flatMap(length -> ...)

The idea here is to produce a new stream for each individual length in the range [1 .. 2], and to flatten those streams into one single stream. flatMap() is essentially the same as a nested loop in imperative programming.

3. Combine letters in a cartesian product

This is the trickiest part: We need to combine each letter with each letter length times. For this, we’ll use the following stream:

Seq.rangeClosed(1, length - 1)
   .foldLeft(Seq.seq(alphabet), (s, i) -> 
        .map(t -> t.v1 + t.v2))

We’re using again rangeClosed() to produce values in the range [1 .. length-1]. foldLeft() is the same as reduce(), except that foldLeft() is guaranteed to go from “left to right” in a stream, without requiring the folding function to be associative. Whew.

In other, more understandable words: foldLeft() is nothing else but an imperative loop. The “seed” of the loop, i.e. the loop’s initial value, is a complete alphabet (Seq.seq(alphabet)). Now, for every value in the range [1 .. length-1], we produce a cartesian product (crossJoin()) between the letters “folded” so far and a new alphabet, and we concatenate each combination into a single new string (t.v1 and t.v2).

That’s it!

Combining everything

The following simple program prints all the values from A .. Z, AA .. ZZ, AAA .. ZZZ to the console:

import java.util.List;

import org.jooq.lambda.Seq;

public class Test {
    public static void main(String[] args) {
        int max = 3;

        List<String> alphabet = Seq
            .rangeClosed('A', 'Z')

        Seq.rangeClosed(1, max)
           .flatMap(length ->
               Seq.rangeClosed(1, length - 1)
                  .foldLeft(Seq.seq(alphabet), (s, i) -> 
                       .map(t -> t.v1 + t.v2)))


This is certainly not the most optimal algorithm for this particular case. One of the best implementations has been given by an unnamed user on Stack Overflow:

import static java.lang.Math.*;

private static String getString(int n) {
    char[] buf = new char[(int) floor(log(25 * (n + 1)) / log(26))];
    for (int i = buf.length - 1; i >= 0; i--) {
        buf[i] = (char) ('A' + n % 26);
        n /= 26;
    return new String(buf);

Unnecessary to say that the latter runs much much faster than the previous functional algorithm.

(0 rating, 0 votes)
You need to be a registered member to rate this.
2 Comments Views Tweet it!
Do you want to know how to develop your skillset to become a Java Rockstar?
Subscribe to our newsletter to start Rocking right now!
To get you started we give you our best selling eBooks for FREE!
1. JPA Mini Book
2. JVM Troubleshooting Guide
3. JUnit Tutorial for Unit Testing
4. Java Annotations Tutorial
5. Java Interview Questions
6. Spring Interview Questions
7. Android UI Design
and many more ....
I agree to the Terms and Privacy Policy
Notify of

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Newest Most Voted
Inline Feedbacks
View all comments
5 years ago

I found this interesting, and since I have not hard of Jool, I decided to try this code in a new Maven project. I have a compile error. I looked through the code and did not find this IntStream method wrapped by Seq.
Error:(29, 36) java: cannot find symbol
symbol: method rangeClosed(char,char)
location: interface org.jooq.lambda.Seq

I am using:


Lukas Eder
5 years ago
Reply to  WranglerAz

Yes, the timing of the article is a bit unfortunate as we haven’t released this code yet. You’ll find it on GitHub: https://github.com/jOOQ/jOOL