Java Numeric Formatting

I can think of numerous times when I have seen others write unnecessary Java code and I have written unnecessary Java code because of lack of awareness of a JDK class that already provides the desired functionality. One example of this is the writing of time-related constants using hard-coded values such as 60, 24, 1440, and 86400 when TimeUnit provides a better, standardized approach. In this post, I look at another example of a class that provides the functionality I have seen developers often implement on their one: NumberFormat.

The NumberFormat class is part of the java.text package, which also includes the frequently used DateFormat and SimpleDateFormat classes. NumberFormat is an abstract class (no public constructor) and instances of its descendants are obtained via overloaded static methods with names such as getInstance(), getCurrencyInstance(), and getPercentInstance().

Currency

The next code listing demonstrates calling NumberFormat.getCurrencyInstance(Locale) to get an instance of NumberFormat that presents numbers in a currency-friendly format.

Demonstrating NumberFormat’s Currency Support

/**
 * Demonstrate use of a Currency Instance of NumberFormat.
 */
public void demonstrateCurrency()
{
   writeHeaderToStandardOutput("Currency NumberFormat Examples");
   final NumberFormat currencyFormat = NumberFormat.getCurrencyInstance(Locale.US);
   out.println("15.5      -> " + currencyFormat.format(15.5));
   out.println("15.54     -> " + currencyFormat.format(15.54));
   out.println("15.345    -> " + currencyFormat.format(15.345));  // rounds to two decimal places
   printCurrencyDetails(currencyFormat.getCurrency());
}

/**
 * Print out details of provided instance of Currency.
 *
 * @param currency Instance of Currency from which details
 *    will be written to standard output.
 */
public void printCurrencyDetails(final Currency currency)
{
   out.println("Concurrency: " + currency);
   out.println("\tISO 4217 Currency Code:           " + currency.getCurrencyCode());
   out.println("\tISO 4217 Numeric Code:            " + currency.getNumericCode());
   out.println("\tCurrency Display Name:            " + currency.getDisplayName(Locale.US));
   out.println("\tCurrency Symbol:                  " + currency.getSymbol(Locale.US));
   out.println("\tCurrency Default Fraction Digits: " + currency.getDefaultFractionDigits());
}

When the above code is executed, the results are as shown next:

==================================================================================
= Currency NumberFormat Examples
==================================================================================
15.5      -> $15.50
15.54     -> $15.54
15.345    -> $15.35
Concurrency: USD
 ISO 4217 Currency Code:           USD
 ISO 4217 Numeric Code:            840
 Currency Display Name:            US Dollar
 Currency Symbol:                  $
 Currency Default Fraction Digits: 2

The above code and associated output demonstrate that the NumberFormat instance used for currency (actually a DecimalFormat), automatically applies the appropriate number of digits and appropriate currency symbol based on the locale.

Percentages

The next code listings and associated output demonstrate use of NumberFormat to present numbers in percentage-friendly format.

Demonstrating NumberFormat’s Percent Format

/**
 * Demonstrate use of a Percent Instance of NumberFormat.
 */
public void demonstratePercentage()
{
   writeHeaderToStandardOutput("Percentage NumberFormat Examples");
   final NumberFormat percentageFormat = NumberFormat.getPercentInstance(Locale.US);
   out.println("Instance of: " + percentageFormat.getClass().getCanonicalName());
   out.println("1        -> " + percentageFormat.format(1));
   // will be 0 because truncated to Integer by Integer division
   out.println("75/100   -> " + percentageFormat.format(75/100));
   out.println(".75      -> " + percentageFormat.format(.75));
   out.println("75.0/100 -> " + percentageFormat.format(75.0/100));
   // will be 0 because truncated to Integer by Integer division
   out.println("83/93    -> " + percentageFormat.format((83/93)));
   out.println("93/83    -> " + percentageFormat.format(93/83));
   out.println(".5       -> " + percentageFormat.format(.5));
   out.println(".912     -> " + percentageFormat.format(.912));
   out.println("---- Setting Minimum Fraction Digits to 1:");
   percentageFormat.setMinimumFractionDigits(1);
   out.println("1        -> " + percentageFormat.format(1));
   out.println(".75      -> " + percentageFormat.format(.75));
   out.println("75.0/100 -> " + percentageFormat.format(75.0/100));
   out.println(".912     -> " + percentageFormat.format(.912));
}
==================================================================================
= Percentage NumberFormat Examples
==================================================================================
1        -> 100%
75/100   -> 0%
.75      -> 75%
75.0/100 -> 75%
83/93    -> 0%
93/83    -> 100%
.5       -> 50%
.912     -> 91%
---- Setting Minimum Fraction Digits to 1:
1        -> 100.0%
.75      -> 75.0%
75.0/100 -> 75.0%
.912     -> 91.2%

The code and output of the percent NumberFormat usage demonstrate that by default the instance of NumberFormat (actually a DecimalFormat in this case) returned by NumberFormat.getPercentInstance(Locale) method has no fractional digits, multiplies the provided number by 100 (assumes that it is the decimal equivalent of a percentage when provided), and adds a percentage sign (%).

Integers

The small amount of code shown next and its associated output demonstrate use of NumberFormat to present numbers in integral format.

Demonstrating NumberFormat’s Integer Format

/**
 * Demonstrate use of an Integer Instance of NumberFormat.
 */
public void demonstrateInteger()
{
   writeHeaderToStandardOutput("Integer NumberFormat Examples");
   final NumberFormat integerFormat = NumberFormat.getIntegerInstance(Locale.US);
   out.println("7.65   -> " + integerFormat.format(7.65));
   out.println("7.5    -> " + integerFormat.format(7.5));
   out.println("7.49   -> " + integerFormat.format(7.49));
   out.println("-23.23 -> " + integerFormat.format(-23.23));
}
==================================================================================
= Integer NumberFormat Examples
==================================================================================
7.65   -> 8
7.5    -> 8
7.49   -> 7
-23.23 -> -23

As demonstrated in the above code and associated output, the NumberFormat method getIntegerInstance(Locale) returns an instance that presents provided numerals as integers.

Fixed Digits

The next code listing and associated output demonstrate using NumberFormat to print fixed-point representation of floating-point numbers. In other words, this use of NumberFormat allows one to represent a number with an exactly prescribed number of digits to the left of the decimal point (“integer” digits) and to the right of the decimal point (“fraction” digits).

Demonstrating NumberFormat for Fixed-Point Numbers

/**
 * Demonstrate generic NumberFormat instance with rounding mode,
 * maximum fraction digits, and minimum integer digits specified.
 */
public void demonstrateNumberFormat()
{
   writeHeaderToStandardOutput("NumberFormat Fixed-Point Examples");
   final NumberFormat numberFormat = NumberFormat.getNumberInstance();
   numberFormat.setRoundingMode(RoundingMode.HALF_UP);
   numberFormat.setMaximumFractionDigits(2);
   numberFormat.setMinimumIntegerDigits(1);
   out.println(numberFormat.format(234.234567));
   out.println(numberFormat.format(1));
   out.println(numberFormat.format(.234567));
   out.println(numberFormat.format(.349));
   out.println(numberFormat.format(.3499));
   out.println(numberFormat.format(0.9999));
}
==================================================================================
= NumberFormat Fixed-Point Examples
==================================================================================
234.23
1
0.23
0.34
0.35
1

The above code and associated output demonstrate the fine-grain control of the minimum number of “integer” digits to represent to the left of the decimal place (at least one, so zero shows up when applicable) and the maximum number of “fraction” digits to the right of the decimal point. Although not shown, the maximum number of integer digits and minimum number of fraction digits can also be specified.

Conclusion

I have used this post to look at how NumberFormat can be used to present numbers in different ways (currency, percentage, integer, fixed number of decimal points, etc.) and often means no or reduced code need be written to massage numbers into these formats. When I first began writing this post, I envisioned including examples and discussion on the direct descendants of NumberFormat (DecimalFormat and ChoiceFormat), but have decided this post is already sufficiently lengthy. I may write about these descendants of NumberFormat in future blog posts.

Reference: Java Numeric Formatting from our JCG partner Dustin Marx at the Inspired by Actual Events blog.

Do you want to know how to develop your skillset to become a Java Rockstar?

Subscribe to our newsletter to start Rocking right now!

To get you started we give you two of our best selling eBooks for FREE!

JPA Mini Book

Learn how to leverage the power of JPA in order to create robust and flexible Java applications. With this Mini Book, you will get introduced to JPA and smoothly transition to more advanced concepts.

JVM Troubleshooting Guide

The Java virtual machine is really the foundation of any Java EE platform. Learn how to master it with this advanced guide!

Given email address is already subscribed, thank you!
Oops. Something went wrong. Please try again later.
Please provide a valid email address.
Thank you, your sign-up request was successful! Please check your e-mail inbox.
Please complete the CAPTCHA.
Please fill in the required fields.

One Response to "Java Numeric Formatting"

  1. Taylor Mathewson says:

    It’s worth pointing out that NumberFormat instances are not thread safe.

Leave a Reply


nine + = 10



Java Code Geeks and all content copyright © 2010-2014, Exelixis Media Ltd | Terms of Use | Privacy Policy | Contact
All trademarks and registered trademarks appearing on Java Code Geeks are the property of their respective owners.
Java is a trademark or registered trademark of Oracle Corporation in the United States and other countries.
Java Code Geeks is not connected to Oracle Corporation and is not sponsored by Oracle Corporation.
Do you want to know how to develop your skillset and become a ...
Java Rockstar?

Subscribe to our newsletter to start Rocking right now!

To get you started we give you two of our best selling eBooks for FREE!

Get ready to Rock!
You can download the complementary eBooks using the links below:
Close