Home » Java » Core Java » Odd practices in Java

About Peter Lawrey

Odd practices in Java

Overview

There are a number of practices in Java which oddly baffle me. Here are but a few. Using -Xmx and -Xms

The option -Xmx is widely used to set the maximum memory size. As noted in the Java HotSpot VM Options Options that begin with -X are non-standard (not guaranteed to be supported on all VM implementations), and are subject to change without notice in subsequent releases of the JDK.

So you would think that such a widely used option would not be non-standard any more. In fact there is a standard option -mx and similarly -ms. I don’t know why these standard options are not use more widely, or even documented.

Using NIO for non-blocking IO only

Non blocking IO was a new feature of NIO for sockets. However, the default behaviour for NIO Socket is blocking. Files are only blocking in NIO. NIO2 provides an asynchronous interface, but does it by passing your request off to an ExecutorService (which is cheating really because it doesn’t anything do what you can’t do better already)

Personally I prefer blocking NIO. Its is only suitable when you have a low number of binary connections, but it is an option which doesn’t get enough press IMHO.

Using the 32-bit JVM to save memory

The amount of memory you save with a 32-bit JVM is far less than you might think. Modern 64-bit JVMs use 32-bit references by default for up to 32 GB heap sizes. It is unlikely you want to have a larger heap size (if only to avoid very long Full GC times)

The 32-bit JVM still has a smaller object header than the 64-bit JVM, but the difference is fairly small. The 64-bit JVM can use more, larger registers (on AMD/Intel x64 systems) and a much larger address space allowing you have less memory limitations.

Using threads to make everything faster

Using multiple threads can increase your CPU utilisation and reduce the impact of IO latency. It doesn’t solve all performance problems. It won’t make your disks go faster, increase your network bandwidth, the size of your L3 cache, increase you CPU to main memory bandwidth or make your database significantly faster.

Similarly making everything concurrent won’t make so much difference either. Do you need 1000 concurrent collections when you only have 8 cores? No matter how many threads you have, only 8 of them will be running at once, and if you have 1000 collections its quite unlikely that two will be using the same collection.

Use concurrency selectively for critical resources. Otherwise you risk not only increasing overhead and slowing down your application, but far worse is the increase in complexity you introduce.

Reference: Odd practices in Java from our JCG partner Peter Lawrey at the Vanilla Java blog.

Do you want to know how to develop your skillset to become a Java Rockstar?

Subscribe to our newsletter to start Rocking right now!

To get you started we give you our best selling eBooks for FREE!

1. JPA Mini Book

2. JVM Troubleshooting Guide

3. JUnit Tutorial for Unit Testing

4. Java Annotations Tutorial

5. Java Interview Questions

6. Spring Interview Questions

7. Android UI Design

and many more ....

Leave a Reply

Your email address will not be published. Required fields are marked *

*


+ 1 = ten

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Do you want to know how to develop your skillset and become a ...

Subscribe to our newsletter to start Rocking right now!

To get you started we give you our best selling eBooks for FREE!
Get ready to Rock!
To download the books, please verify your email address by following the instructions found on the email we just sent you.

THANK YOU!

Close