

GWT Programming Cookbook i

GWT Programming Cookbook

GWT Programming Cookbook ii

Contents

1 GWT Tutorial for Beginners 1

1.1 Overview . 1

1.2 Sample Web Application using GWT . 1

1.2.1 Download Eclipse, install Google plugin and GWT SDK . 1

1.2.2 Steps to install Eclipse plugin for GWT development . 1

1.2.3 Creating Sample Web Application in GWT . 7

1.2.3.1 Create a new project using GWT Development toolkit . 7

1.2.3.2 GWT Web Application Project Structure . 11

1.3 Debugging GWT Web Application . 18

1.4 Project References . 19

1.5 Conclusion . 19

1.6 Download Eclipse Project . 19

2 GWT Sample Application Example 20

2.1 Introduction . 20

2.2 GWT SDK . 20

2.3 Installing Eclipse GWT Plugin . 21

2.4 Creating GWT project . 22

2.5 Development Mode . 25

2.6 Testing the default project configuration . 25

2.7 Project components . 26

2.7.1 GWT Configuration file . 26

2.7.2 Landing page . 27

2.7.3 Stylesheet . 28

2.7.4 Java code . 28

2.8 Download the source file . 28

GWT Programming Cookbook iii

3 GWT Interview Questions and Answers 29

3.1 What is GWT? . 29

3.2 What is a module descriptor in GWT application? . 29

3.3 What is a GWT Module? . 29

3.4 What is an entry point class? . 29

3.5 Which method of the Entry point class is called when the GWT application is loaded? What happens if there are
multiple Entry point classes? . 30

3.6 How do I enable assertions? . 30

3.7 What is the default style name of any GWT widget? . 30

3.8 What is internationalization? . 30

3.9 What is the difference between TextResource and ExternalTextResource 30

3.10 How can you set Browser targeted Compilation in GWT? . 30

3.11 Why doesn’t GWT provide a synchronous server connection option? . 30

3.12 What is GWT ClientBundle? . 31

3.13 What is DataResource in GWT? . 31

3.14 How to create custom widgets in GWT? . 31

3.15 What is a UiBinder? . 31

3.16 What is the Same Origin Policy, and how does it affect GWT? . 31

3.17 Which class is the superclass of all UI widgets? . 31

3.18 What is GWT RPC . 32

3.19 What are Layout Panels? . 32

3.20 How is GWT different from other frameworks? . 32

3.21 What are the features of GWT . 32

3.22 What can I do to make images and borders appear to load more quickly the first time they are used? 32

3.23 What is Deferred Binding? . 32

3.24 How do I create an app that fills the page vertically when the browser window resizes? 33

3.25 How do you make a call to the server if you are not using GWT RPC? . 33

3.26 How can I dynamically fetch JSON feeds from other web domains? . 33

3.27 Conclusion . 33

4 GWT AsyncCallback Example 34

4.1 Introduction . 34

4.2 GWT RPC Mechanism . 34

4.3 Creating Service . 35

4.3.1 Define service Interface . 35

4.3.2 Define Async Service Interface . 36

4.3.3 Implementing AsynchCallback and handling its Failure . 36

4.4 Implementing Service . 36

4.4.1 Define Service Interface Implementation . 36

4.4.2 Update entry of Service inside web.xml . 37

4.5 Example . 37

4.6 Project References . 38

4.7 Download Eclipse Project . 38

GWT Programming Cookbook iv

5 GWT Panel Example 39

5.1 Overview . 39

5.2 Introduction . 39

5.3 Layout of a GWT Web Application UI . 39

5.4 Basic Panels . 39

5.4.1 RootPanel . 39

5.4.2 FlowPanel . 41

5.4.3 HTMLPanel . 43

5.4.4 FormPanel . 45

5.4.5 ScrollPanel . 48

5.4.6 Grid . 50

5.4.7 FlexTable . 52

5.5 LayoutPanels . 54

5.5.1 RootLayoutPanel . 54

5.5.2 DockLayoutPanel . 55

5.5.3 SplitLayoutPanel . 57

5.5.4 StackLayoutPanel . 59

5.5.5 TabLayoutPanel . 61

5.6 Project References . 63

5.7 Download Eclipse Project . 64

6 GWT HTMLPanel Example 65

6.1 Introduction . 65

6.2 Class Declaration . 65

6.3 Constructors . 65

6.3.1 HTMLPanel(String html) . 65

6.3.2 HTMLPanel(SafeHtml safeHtml) . 67

6.3.3 HTMLPanel(String tag, String html) . 69

6.4 Method Summary . 71

6.5 Examples . 72

6.5.1 Login Page using HTMLPanel . 72

6.5.2 Error Dialog Page using HTMLPanel . 73

6.6 Project References . 75

6.7 Download Eclipse Project . 75

GWT Programming Cookbook v

7 GWT Scroll Panel Example 76

7.1 Introduction . 76

7.1.1 Constructors . 76

7.2 Creating GWT project . 77

7.3 Entry point class . 79

7.4 Compile . 79

7.5 Running the application . 80

7.6 Custom Scroll Panel . 80

7.7 Download the source file . 81

8 GWT Calendar Example 82

8.1 Creating GWT project . 82

8.2 Setup . 85

8.3 Add widget . 85

8.4 Compile . 86

8.5 Running the application . 86

8.6 Download the source file . 87

9 GWT Dialogbox Example 88

9.1 Introduction . 88

9.2 Class Declaration . 88

9.3 Constructors . 88

9.3.1 DialogBox() . 88

9.3.2 DialogBox(boolean autoHide) . 89

9.3.3 DialogBox(Caption captionWidget) . 89

9.3.4 DialogBox(boolean autoHide, boolean modal) . 89

9.3.5 DialogBox(boolean autoHide, boolean modal, Caption captionWidget) 89

9.4 Method Summary . 89

9.5 Examples . 89

9.5.1 Custom Dialogbox Example 1 . 89

9.5.2 Custom Dialogbox Example 2 . 92

9.6 Project References . 93

9.7 Download Eclipse Project . 93

10 GWT Dialogbox Example 94

10.1 Introduction . 94

10.2 Creating GWT project . 94

10.3 Java classes . 97

10.4 Difference . 99

10.5 Compile . 99

10.6 Running the application . 100

10.7 Download the source file . 100

GWT Programming Cookbook vi

Copyright (c) Exelixis Media P.C., 2016

All rights reserved. Without limiting the rights under
copyright reserved above, no part of this publication
may be reproduced, stored or introduced into a retrieval system, or
transmitted, in any form or by any means (electronic, mechanical,
photocopying, recording or otherwise), without the prior written
permission of the copyright owner.

GWT Programming Cookbook vii

Preface

Google Web Toolkit, or GWT Web Toolkit, is an open source set of tools that allows web developers to create and maintain
complex JavaScript front-end applications in Java. Other than a few native libraries, everything is Java source that can be built
on any supported platform with the included GWT Ant build files. It is licensed under the Apache License version 2.0.

GWT emphasizes reusable approaches to common web development tasks, namely asynchronous remote procedure calls, history
management, bookmarking, UI abstraction, internationalization, and cross-browser portability. (Source: https://en.wikipedia.org/-
wiki/Google_Web_Toolkit)

In this ebook, we provide a compilation of GWT examples that will help you kick-start your own projects. We cover a wide
range of topics, from sample applications and interview questions, to Callback functionality and various widgets. With our
straightforward tutorials, you will be able to get your own projects up and running in minimum time.

https://en.wikipedia.org/wiki/Google_Web_Toolkit
https://en.wikipedia.org/wiki/Google_Web_Toolkit

GWT Programming Cookbook viii

About the Author

JCGs (Java Code Geeks) is an independent online community focused on creating the ultimate Java to Java developers resource
center; targeted at the technical architect, technical team lead (senior developer), project manager and junior developers alike.

JCGs serve the Java, SOA, Agile and Telecom communities with daily news written by domain experts, articles, tutorials, reviews,
announcements, code snippets and open source projects.

You can find them online at https://www.javacodegeeks.com/

https://www.javacodegeeks.com/

GWT Programming Cookbook 1 / 100

Chapter 1

GWT Tutorial for Beginners

1.1 Overview

In this tutorial, we will get to know about Google Web Toolkit (GWT). GWT is a development toolkit for creating optimized web
application while programming in Java.

GWT allows you to build a complete web application in Java. Eclipse IDE supports its development using plugin Google Plugin.
GWT compiler compiles Java code into optimized Java Scripts compatible for multiple browsers. GWT allows easy development
of AJAX based web application and provides a rich library of UI widgets to support faster development.

GWT Web Application can be customized using CSS files. GWT widgets provides the Java APIs for styling widgets. GWT
provides its own RPC (Remote Procedure Call) framework to communicate between client and server. The implementation
of GWT RPC service is based on Java Servlet architecture that enables exchange of Java object over HTTP. GWT handles
serialization of the Java objects passing back and forth & the arguments in the method calls and the return value.

Pre-requisite: The readers are expected to know the basics of Java Programming (SE & EE).

1.2 Sample Web Application using GWT

1.2.1 Download Eclipse, install Google plugin and GWT SDK

For the GWT development, Google provides Eclipse plugin and that can be downlodaded from here. If you don’t have Eclipse
installed yet, go to the Eclipse Download section and get it done. As part of this article, we will be using Eclipse 4.5 (marsh).

1.2.2 Steps to install Eclipse plugin for GWT development

Go to Help→ Install New Software. . .

https://developers.google.com/eclipse/docs/download

GWT Programming Cookbook 2 / 100

Figure 1.1: Installing Google Plugin - Step 1

Enter the URL to download Google Plugin which one is compatible with your Eclipse version. Here I am using Eclipse 4.5.
Click on Add button.

https://dl.google.com/eclipse/plugin/4.5

GWT Programming Cookbook 3 / 100

Figure 1.2: Installing Google Plugin - Step 2

A pop-up will appear to Add repository. Provide a relevant name and URL to download Google Plugin. Click on ‘OK’ button.

https://dl.google.com/eclipse/plugin/4.5

GWT Programming Cookbook 4 / 100

Figure 1.3: Installing Google Plugin - Step 3

It might take few seconds to locate available software within given repository. Once it showsthe available softare under given
repository, select the check box for ‘Google Plugin for Eclipse’, Developer Tool and SDK. Click on ‘Next’ button.

GWT Programming Cookbook 5 / 100

Figure 1.4: Installing Google Plugin - Step 4

It will show plugin details for review just before installing it. Click on Next button.

GWT Programming Cookbook 6 / 100

Figure 1.5: Installing Google Plugin - Step 5

After this, accept the license agreement and finish the Google Plugin installation. After Eclipse restart, Goolge Plugin is visible
on Eclipse’s toolbar.

GWT Programming Cookbook 7 / 100

Figure 1.6: Installing Google Plugin - Step Final

1.2.3 Creating Sample Web Application in GWT

1.2.3.1 Create a new project using GWT Development toolkit

Go to File→ New→ Other. . .

GWT Programming Cookbook 8 / 100

Figure 1.7: Creating GWT Web App Project - Step 1

Select Google Web Application wizard and click on ‘Next’ button.

GWT Programming Cookbook 9 / 100

Figure 1.8: Creating GWT Web App Project - Step 2

Provide project name and package name. Make sure that you have selected the checkbox to ‘Use GWT’. Here my intention is
not using the Google App Engine that may slow down Eclipse significantly. Moreover, if you have created a Google Web Toolkit
project you don’t necessarily need to deploy it to Google App Engine. For example, you can deploy the web application on
Tomcat or Jboss or any other java based web container.

Here the option to generate sample code is remains checked. This basically create entire example project. Although I am not
going to use most of its generated files but this will going to help while understanding the GWT Web Application architecture in
details. Click on ‘Finish’ button.

GWT Programming Cookbook 10 / 100

Figure 1.9: Creating GWT Web App Project - Step 3

GWT Programming Cookbook 11 / 100

1.2.3.2 GWT Web Application Project Structure

Client and Source packages

Now when you open the source package you can see a client package that basically contains GUI code, a server package that
contains server-side implementation and a shared package which basically for shared classes between various parts of the project.

Figure 1.10: Creating GWT Web App Project - Step Final

Entry Point Class

Considering the scope of this tutorial, I am not bothered to server side implementation, so I am going to delete shared package and
classes inside server package. There are references to server-side code inside client package named as GreetingService.
java and GreetingServiceAsynch.java, these classes are also need to be deleted. There is a class SampleWebAppl
ication.java I am going to keep this file because the is Entry Point for a GWT application.

Although this file required to be cleaned as there are many references to server-side code inside it. There is a method onM
oduleLoad(), this is the Entry Point of the program or the very first method that gets executed when running the GWT
Web Application. This is very similar to public static void main(String args[]) method in a conventional java
program.

SampleWebApplication.java

GWT Programming Cookbook 12 / 100

package com.javacodegeeks.helloworld.client;

import com.google.gwt.core.client.EntryPoint;

/**
* Entry point classes define onModuleLoad()

*/
public class SampleWebApplication implements EntryPoint {

/**
* This is the entry point method.

*/
public void onModuleLoad() {

// TODO
}

}

Deployment Descriptor

If you are familiar with J2EE programming you will be aware of web.xml that is deployment descriptor for the Servlet-based
Java Web Application and used for configuration. As we define servlet’s entry in web.xml, now for this autogenerated code,
GWT created servlets are also defined here. As we have deleted server-side code, now these entries in web.xml are redundant
specification tags. These tags need to be removed as well.

I am going to keep the welcome file that is SampleWebApplication.html, as this is going to be start page for our GWT
Web Application.

web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="https://java.sun.com/xml/ns/javaee
https://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"

version="2.5"
xmlns="https://java.sun.com/xml/ns/javaee">

<!-- Servlets -->

<!-- Default page to serve -->
<welcome-file-list>
<welcome-file>SampleWebApplication.html</welcome-file>

</welcome-file-list>

</web-app>

Module Descriptor

File SampleWebApplication.gwt.xml under package com.javacodegeeks.helloworld is GWT specific con-
figuration file. Let’s have a close look into tags defined into this file.

Tag inherits includes library from core GWT. If we are willing to add any third party library we can add here using tag
inharits. It references a default style which is based on how GWT control looks.

Tag entry-point defines the entry point class that contains the entry point of the GWT Web Application; in this case it is
SampleWebApplication.java. Besides these, as GWT needs to know which code need to be converted into Java Scripts
from Java code, it also contains the references of client package and shared package.

SampleWebApplication.gwt.xml

<?xml version="1.0" encoding="UTF-8"?>
<!--

When updating your version of GWT, you should also update this DTD reference,

GWT Programming Cookbook 13 / 100

so that your app can take advantage of the latest GWT module capabilities.
-->
<!DOCTYPE module PUBLIC "-//Google Inc.//DTD Google Web Toolkit 2.7.0//EN"

"https://gwtproject.org/doctype/2.7.0/gwt-module.dtd">
<module rename-to=’samplewebapplication’>

<!-- Inherit the core Web Toolkit stuff. -->
<inherits name=’com.google.gwt.user.User’/>

<!-- Inherit the default GWT style sheet. You can change -->
<!-- the theme of your GWT application by uncommenting -->
<!-- any one of the following lines. -->
<inherits name=’com.google.gwt.user.theme.clean.Clean’/>
<!-- <inherits name=’com.google.gwt.user.theme.standard.Standard’/> -->
<!-- <inherits name=’com.google.gwt.user.theme.chrome.Chrome’/> -->
<!-- <inherits name=’com.google.gwt.user.theme.dark.Dark’/> -->

<!-- Other module inherits -->

<!-- Specify the app entry point class. -->
<entry-point class=’com.javacodegeeks.helloworld.client.SampleWebApplication’/>

<!-- Specify the paths for translatable code -->
<source path=’client’/>
<source path=’shared’/>

<!-- allow Super Dev Mode -->
<add-linker name="xsiframe"/>

</module>

Welcome file

Now let’s have a close look into SampleWebApplication.html. We will discuss about several tags and its importance in
reference with GWT application.

There is a CSS file reference using tag link intended for styling. There is SampleWebApplication.css file as part of
auto-generated files with some default values. The tag title Web Application Starter Project where you can
mention anything that you want to be displayed as title on you web application GUI.

You can see the tag scripts. This tag is responsible for including the java scripts code generated from java code after
compilation into HTML file. When we compile java code using GWT compiler, the java code gets converted into optimized
Java Scripts and this tag includes the generated Java Scripts into HTML file. If this tag is not here, the GWT code is not going to
be included into your web application project.

At the end of the file there is body tag that contains some markups to render HTML file, I am going to delete that.

SampleWebApplication.html

<!doctype html>
<!-- The DOCTYPE declaration above will set the -->
<!-- browser’s rendering engine into -->
<!-- "Standards Mode". Replacing this declaration -->
<!-- with a "Quirks Mode" doctype is not supported. -->

<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">

<!-- -->
<!-- Consider inlining CSS to reduce the number of requested files -->
<!-- -->
<link type="text/css" rel="stylesheet" href="SampleWebApplication.css">

<!-- -->

GWT Programming Cookbook 14 / 100

<!-- Any title is fine -->
<!-- -->
<title>Web Application Starter Project</title>

<!-- -->
<!-- This script loads your compiled module. -->
<!-- If you add any GWT meta tags, they must -->
<!-- be added before this line. -->
<!-- -->
<script type="text/javascript" language="javascript" src="samplewebapplication/ ←↩

samplewebapplication.nocache.js"></script>
</head>

<!-- -->
<!-- The body can have arbitrary html, or -->
<!-- you can leave the body empty if you want -->
<!-- to create a completely dynamic UI. -->
<!-- -->
<body>
<!-- RECOMMENDED if your web app will not function without JavaScript enabled -->
<noscript>

Your web browser must have JavaScript enabled
in order for this application to display correctly.

</noscript>

</body>
</html>

Adding UI components into GWT Web Application Project

Before going through this section I will suggest to look into GWT Showcase where you will get familiar with available widgets
to develop GUI.

Now we can move to our Entry Point Class and will do some coding for UI development. Here we have developed a very basic
GWT Web Application GUI that shows a button and a label and that label gets updated on click of the button. Here is the GWT
Web Application code that comprises very basic UI Widgets: a GWT Label and a GWT Button. GWT Label is getting updated on
click of GWT Button. All these widgets are added into a GWT Vertical Panel and this panel is added into Root Panel of Welcome
HTML page.

SampleWebApplication.java

package com.javacodegeeks.helloworld.client;

import com.google.gwt.core.client.EntryPoint;
import com.google.gwt.event.dom.client.ClickEvent;
import com.google.gwt.event.dom.client.ClickHandler;
import com.google.gwt.user.client.ui.Button;
import com.google.gwt.user.client.ui.Label;
import com.google.gwt.user.client.ui.RootPanel;
import com.google.gwt.user.client.ui.VerticalPanel;

/**
* Entry point classes define ‘onModuleLoad()‘.

*/
public class SampleWebApplication implements EntryPoint {

/*
* A vertical panel that hold other components over UI.

*/
VerticalPanel vPanel;

https://samples.gwtproject.org/samples/Showcase/Showcase.html

GWT Programming Cookbook 15 / 100

/*
* A label that gets updated on click of button.

*/
Label lbl;

/**
* This is the entry point method.

*/
public void onModuleLoad() {

vPanel = new VerticalPanel();
lbl = new Label();

/*
* Button and its click handlar.

*/
Button btn = new Button("GWT Button");
btn.addClickHandler(new ClickHandler() {

@Override
public void onClick(ClickEvent event) {

lbl.setText("You clicked GWT Button!");
}

});

/*
* adding label and button into Vertical Panel.

*/
vPanel.add(lbl);
vPanel.add(btn);

/*
* Adding vertical panel into HTML page.

*/
RootPanel.get().add(vPanel);

}
}

Running GWT Web Application

GWT Web Application can run into two modes, Development mode and Production mode. In development mode java code runs
on JVM whereas in production mode GWT compiler compiles java code and creates java scripts that run on browser.

Here we run our GWT Web Application into ‘GWT Super Dev Mode’ that compiles java code at run time and this runs java
scripts on browser and that can be debugged at browser level. Here I recommend using Google Chrome that provides debug at
ease.

GWT Programming Cookbook 16 / 100

Figure 1.11: Running GWT App - Step 1

Now copy the URL.

GWT Programming Cookbook 17 / 100

Figure 1.12: Running GWT Web App - Step 2

Paste the URL into browser. You can see GWT Web Application is compiling on browser and finally it is running on browser.

GWT Programming Cookbook 18 / 100

Figure 1.13: Running GWT App - Step Final

1.3 Debugging GWT Web Application

With newer Chrome version, you will not able to run GWT Web Application in classic development mode as its support is now
closed from Google. This is because of newer chrome version provides support for ‘Super Dev Mode’ and enable user to debug
using asserts, console logging and error messages.

From GWT Website, GWT Development Mode will no longer be available for Chrome sometime in 2014, so we improved
alternate ways of debugging. There are improvements to Super Dev Mode, asserts, console logging, and error messages.

https://www.gwtproject.org/release-notes.html#Release_Notes_2_6_1

GWT Programming Cookbook 19 / 100

1.4 Project References

GWT Overview

GWT Getting Started

GWT Latest Tutorial

GWT Product Release Notes

GWT Sample Showcase

1.5 Conclusion

This tutorial covers the development of Client side of a GWT Web Application. I would suggest to explore more about UI
development and hands on GWT Widgets.

We can explore more on Server communication in following tutorial.

1.6 Download Eclipse Project

Download

You can download the full source code of this example here: GWTTutorialforBeginners

https://www.gwtproject.org/overview.html
https://www.gwtproject.org/gettingstarted.html
https://www.gwtproject.org/doc/latest/tutorial/index.html
https://www.gwtproject.org/release-notes.html#Release_Notes_2_6_1
https://samples.gwtproject.org/samples/Showcase/Showcase.html
https://examples.javacodegeeks.com/wp-content/uploads/2016/06/GWTTutorialforBeginners.zip

GWT Programming Cookbook 20 / 100

Chapter 2

GWT Sample Application Example

In this example we will learn how to build a simple GWT application from scratch. Google Web Toolkit is a development
framework for creating Ajax-enabled web applications in Java. It’s open source, completely free. Tools and technologies used in
this example are Java 1.8, Eclipse Luna 4.4.2, Eclipse GWT Plugin 2.6

2.1 Introduction

The GWT SDK provides a set of core Java APIs and Widgets. These allow us to write AJAX applications in Java and then
compile the source to highly optimized JavaScript that runs across all browsers, including mobile browsers for Android and the
iPhone. The GWT SDK contains the Java API libraries, compiler, and development server. It lets us write client-side applications
in Java and deploy them as JavaScript.

Constructing AJAX applications in this manner is more productive thanks to a higher level of abstraction on top of common
concepts like DOM manipulation and XHR communication. We aren’t limited to pre-canned widgets either. Anything we can
do with the browser’s DOM and JavaScript can be done in GWT, including interacting with hand-written JavaScript.

We can debug AJAX applications in our favorite IDE just like we would a desktop application, and in our favorite browser just
like we would if you were coding JavaScript. The GWT developer plugin spans the gap between Java bytecode in the debugger
and the browser’s JavaScript. Thanks to the GWT developer plugin, there’s no compiling of code to JavaScript to view it in the
browser. We can use the same edit-refresh-view cycle we’re used to with JavaScript, while at the same time inspect variables, set
breakpoints, and utilize all the other debugger tools available to us with Java. And because GWT’s development mode is now in
the browser itself, we can use tools like Firebug and Inspector as we code in Java.

GWT contains two powerful tools for creating optimized web applications. The GWT compiler performs comprehensive opti-
mizations across your codebase - in-lining methods, removing dead code, optimizing strings, and more. By setting split-points in
the code, it can also segment your download into multiple JavaScript fragments, splitting up large applications for faster startup
time. Performance bottlenecks aren’t limited to JavaScript. Browser layout and CSS often behave in strange ways that are hard to
diagnose. Speed Tracer is a new Chrome Extension in GWT that enables you to diagnose performance problems in the browser.

When you’re ready to deploy, GWT compiles your Java source code into optimized, stand-alone JavaScript files that automatically
run on all major browsers, as well as mobile browsers for Android and the iPhone.

2.2 GWT SDK

With the GWT SDK, you write your AJAX front-end in the Java programming language which GWT then cross-compiles into
optimized JavaScript that automatically works across all major browsers. During development, you can iterate quickly in the
same “edit - refresh - view” cycle you’re accustomed to with JavaScript, with the added benefit of being able to debug and step
through your Java code line by line. When you’re ready to deploy, the GWT compiler compiles your Java source code into
optimized, standalone JavaScript files.

GWT Programming Cookbook 21 / 100

Unlike JavaScript minifiers that work only at a textual level, the GWT compiler performs comprehensive static analysis and
optimizations across your entire GWT codebase, often producing JavaScript that loads and executes faster than equivalent hand-
written JavaScript. For example, the GWT compiler safely eliminates dead code - aggressively pruning unused classes, methods,
fields, and even method parameters - to ensure that your compiled script is the smallest it can possibly be. Another example: the
GWT compiler selectively inlines methods, eliminating the performance overhead of method calls.

2.3 Installing Eclipse GWT Plugin

You can install the Google Plugin for Eclipse using the software update feature of Eclipse. Below we describe the steps for
installing this plugin:

• Start Eclipse

• Select Help > Install New Software. . . In the dialog that appears, enter the update site URL into the Work with text box:
https://dl.google.com/eclipse/plugin/4.4.Press the Enter key.

GWT Programming Cookbook 22 / 100

Figure 2.1: GWT Plugin

• The required component is Google Plugin for Eclipse. Select the checkbox next to Google Plugin for Eclipse(required). Click
Next.

• Review the features that you are about to install. Click Next.

• Read the license agreements and then select I accept the terms of the license agreements. Click Finish.

• Click OK on the Security Warning.

• You will then be asked be asked if you would like to restart Eclipse. Click Restart Now.

2.4 Creating GWT project

In this section we will learn how to create a new GWT project using Eclipse plugin. To test that the project is configured correctly
we will run the application in development mode before deploying it in the reals application server. One of the benefits of using

GWT Programming Cookbook 23 / 100

GWT is that we can leverage the tools, such as refactoring, code completion, and debugging, available in a Java IDE. Below are
the steps needed to create a new GWT project using Eclipse.

• Open Eclipse. Click File⇒New⇒Web Application Project. If we don’t find Web Application Project option in the list, click
on Other and in the Wizards search box write Web Application Project.

• In the Project name text box enter the name of the project (GWTApplication). In the Package text box enter the package name
(com.javacodegeeks).

GWT Programming Cookbook 24 / 100

Figure 2.2: Project Setup

GWT Programming Cookbook 25 / 100

• Ensure that the Use default SDK {$GWT-version} option is selected.

• (Optional) If you are using Google App Engine, make sure Use Google App Engine is checked and that Use default SDK (App
Engine) is selected.

• If you did not install the SDKs when you installed the Google Plugin for Eclipse, you should click Configure SDKs. . . to
specify the directory where GWT (and the App Engine SDK if necessary) was unzipped.

• Make sure the check box under Sample Code (Generate project sample code) is selected.

• Click Finish button.

2.5 Development Mode

We can run the GWT application in a development mode which is a very useful feature. This feature can be used to diagnose
any UI issues. To start a GWT application in development mode Right click on the GWT project and choose Debug As⇒’Web
Application’. This creates a Web Application launch configuration for you and launches it. The web application launch configu-
ration will start a local web server and GWT development mode server. You will find a Web Application view next to the console
window. Inside you will find the URL for the development mode server. Paste this URL into Firefox, Internet Explorer, Chrome,
or Safari. If this is your first time using that browser with the development mode server, it will prompt you to install the GWT
Developer Plugin. Follow the instructions in the browser to install.

Once the application is running in a development mode you can make some changes (client-side) and can immediately see the
result when refreshing the browser page.

2.6 Testing the default project configuration

In this section we will see how we can test that the project setup is done correctly. To check that all the project components
were created, run the starter application in development mode. In development mode, you can interact with the application in a
browser just as you would when it’s eventually deployed.

• In the Package Explorer window right click on the Project.

• Select Run As⇒Web Application (GWT Classic Dev Mode)

• Copy the URL displayed in the Development Mode window and paste it in the browser and press Enter.

Below is what gets output in the Console window when we run the application:

Initializing App Engine server
Feb 26, 2016 12:23:59 PM com.google.apphosting.utils.config.AppEngineWebXmlReader ←↩

readAppEngineWebXml
INFO: Successfully processed E:\meraj\study\eclipse-workspace\GWTApplication\war\WEB-INF/ ←↩

appengine-web.xml
Feb 26, 2016 12:23:59 PM com.google.apphosting.utils.config.AbstractConfigXmlReader ←↩

readConfigXml
INFO: Successfully processed E:\meraj\study\eclipse-workspace\GWTApplication\war\WEB-INF/ ←↩

web.xml
Feb 26, 2016 12:23:59 PM com.google.appengine.tools.development.SystemPropertiesManager ←↩

setSystemProperties
INFO: Overwriting system property key ’java.util.logging.config.file’, value ’E:\meraj\ ←↩

study\eclipse\plugins\com.google.appengine.eclipse.sdkbundle_1.9.19\appengine-java-sdk ←↩
-1.9.19\config\sdk\logging.properties’ with value ’WEB-INF/logging.properties’ from ’E:\ ←↩
meraj\study\eclipse-workspace\GWTApplication\war\WEB-INF\appengine-web.xml’

Feb 26, 2016 12:24:00 PM com.google.apphosting.utils.jetty.JettyLogger info
INFO: Logging to JettyLogger(null) via com.google.apphosting.utils.jetty.JettyLogger
Feb 26, 2016 12:24:00 PM com.google.appengine.tools.development.DevAppServerImpl ←↩

setServerTimeZone

GWT Programming Cookbook 26 / 100

WARNING: Unable to set the TimeZone to UTC (this is expected if running on JDK 8)
Feb 26, 2016 12:24:00 PM com.google.apphosting.utils.jetty.JettyLogger info
INFO: jetty-6.1.x
Feb 26, 2016 12:24:02 PM com.google.apphosting.utils.jetty.JettyLogger info
INFO: Started SelectChannelConnector@0.0.0.0:8888
Feb 26, 2016 12:24:02 PM com.google.appengine.tools.development.AbstractModule startup
INFO: Module instance default is running at https://localhost:8888/
Feb 26, 2016 12:24:02 PM com.google.appengine.tools.development.AbstractModule startup
INFO: The admin console is running at https://localhost:8888/_ah/admin
Feb 26, 2016 12:24:02 PM com.google.appengine.tools.development.DevAppServerImpl doStart
INFO: Dev App Server is now running

Figure 2.3: Output

Once you have started the development mode and entered the URL into the browser, the browser will attempt to connect. If this
is your first time running a GWT application in development mode, you may be prompted to install the Google Web Toolkit
Developer Plugin. Follow the instructions on the page to install the plugin, then restart the browser and return to the same URL.

2.7 Project components

Let’s examine some of the generated files and see how they fit together to form a GWT project.

2.7.1 GWT Configuration file

The module file is located at src/com/javacodegeeks/GWTApplication.gwt.xml. It contains the definition of the GWT module, the
collection of resources that comprise a GWT application or a shared package. By default, it inherits the core GWT functionality
required for every project. Optionally, you can specify other GWT modules to inherit from.

GWT Programming Cookbook 27 / 100

<?xml version="1.0" encoding="UTF-8"?>
<!--
When updating your version of GWT, you should also update this DTD reference,
so that your app can take advantage of the latest GWT module capabilities.
-->
<!DOCTYPE module PUBLIC "-//Google Inc.//DTD Google Web Toolkit 2.6.0//EN"
"https://google-web-toolkit.googlecode.com/svn/tags/2.6.0/distro-source/core/src/gwt-module ←↩

.dtd">
<module rename-to=’gwtapplication’>

<!-- Inherit the core Web Toolkit stuff. -->
<inherits name=’com.google.gwt.user.User’/>

<!-- Inherit the default GWT style sheet. You can change -->
<!-- the theme of your GWT application by uncommenting -->
<!-- any one of the following lines. -->
<inherits name=’com.google.gwt.user.theme.clean.Clean’/>
<!-- <inherits name=’com.google.gwt.user.theme.standard.Standard’/> -->
<!-- <inherits name=’com.google.gwt.user.theme.chrome.Chrome’/> -->
<!-- <inherits name=’com.google.gwt.user.theme.dark.Dark’/> -->

<!-- Other module inherits -->

<!-- Specify the app entry point class. -->
<entry-point class=’com.javacodegeeks.client.GWTApplication’/>

<!-- Specify the paths for translatable code -->
<source path=’client’/>
<source path=’shared’/>

<!-- allow Super Dev Mode -->
<add-linker name="xsiframe"/>

</module>

In the module XML file, you specify your application’s entry point class. In order to compile, a GWT module must specify an
entry point. If a GWT module has no entry point, then it can only be inherited by other modules. It is possible to include other
modules that have entry points specified in their module XML files. If so, then your module would have multiple entry points.
Each entry point is executed in sequence.

By default, the application uses two style sheets: the default GWT style sheet, standard.css (which is referenced via the inherited
theme), and the application style sheet, GSTApplication.css which was generated by Eclipse GWT plugin.

2.7.2 Landing page

The code for a web application executes within an HTML document. In GWT, we call this the host page. For example, the
host page for the GWTApplication project is GWTApplication.html. The host page references the application style sheet, GW-
TApplication.css. The host page references the path of JavaScript source code (generated by GWT) responsible for the dynamic
elements on the page. The contents of the entire body element can be generated dynamically, for example, as it is with starter
application. However, when you implement the StockWatcher application, you will use a mix of static and dynamic elements.
You’ll create an HTML element to use as placeholder for the dynamically generated portions of the page.

To provide better cross-browser compatibility, GWT sets the doctype declaration to HTML 4.01 Transitional. This, in turn, sets
the browser’s rendering engine to “Quirks Mode”. If you instead want to render the application in “Standards Mode”, there are
a number of other doctypes you can use to force the browser to this render mode. In general, GWT applications will work in
“Standards Mode” just as well as “Quirks Mode”, but in some cases using widgets like panels and such may not render correctly.
This problem has been greatly improved since GWT 1.5, and more work is being done to solve this problem once and for all.

GWT provides a mechanism for helping your application meet users’ expectations of a web page, specifically in their ability
to use the browser’s back button in such situations as a multi-page wizard or a shopping cart/checkout scenario. The host page
contains the iframe tag necessary for incorporating history support in your GWT application.

GWT Programming Cookbook 28 / 100

2.7.3 Stylesheet

A style sheet is associated with each project. By default, the application style sheet, GWTApplication.css, contains style rules
for the starter application. Just as for any web page, you can specify multiple style sheets. List multiple style sheets in their order
of inheritance; that is, with the most specific style rules in the last style sheet listed.

2.7.4 Java code

Currently, GWTApplication.java contains the Java source for the starter application. The GWTApplication class implements the
GWT interface EntryPoint. It contains the method onModuleLoad(). Because the GWTApplication class is specified
as the entry point class in GWTApplication’s module definition, when you launch GWTApplication the onModuleLoad()
method is called.

The GWTApplication class inherits functionality via other GWT modules you included in GWTApplication’s module definition
(GWTApplication.gwt.xml). For example, when building the user interface, you’ll be able to include types and resources from
the package com.google.gwt.user.client.ui because it is part of the GWT core functionality included in the GWT
module com.google.gwt.user.User.

2.8 Download the source file

This was an example of developing a GWT application.

Download

You can download the full source code of this example here: GWT Application Example. Please note that to save space the jar
files from the lib folder have been removed.

https://examples.javacodegeeks.com/wp-content/uploads/2016/02/GWTApplication.zip

GWT Programming Cookbook 29 / 100

Chapter 3

GWT Interview Questions and Answers

In this article we will learn about the most common interview questions asked in GWT domain. We will start with the basic ones
then move on to more tricky ones.

3.1 What is GWT?

Google Web Toolkit (GWT) is a development toolkit for building ajax applications using Java. The programmer writes code in
Java then GWT compiler converts this code to JavaScript. With GWT, we can develop and debug AJAX applications in the Java
language using the Java development tools of our choice

GWT provides two modes:

• Development Mode: allows to debug the Java code of the application directly via the standard Java debugger.

• Web mode: the application is translated into HTML and Javascript code and can be deployed to a webserver.

3.2 What is a module descriptor in GWT application?

A module descriptor is a configuration file used to set-up a GWT application.

3.3 What is a GWT Module?

A GWT module is simply an encapsulation of functionality. It shares some similarities with a Java package but is not the same
thing. A GWT module is named similarly to a Java package in that it follows the usual dotted-path naming convention. For
example, most of the standard GWT modules are located underneath “com.google.gwt” However, the similarity between GWT
modules and Java packages ends with this naming convention.

A module is defined by an XML descriptor file ending with the extension “.gwt.xml”, and the name of that file determines the
name of the module. For example, if we have a file named src/com/mycompany/apps/MyApplication.gwt.xml,
then that will create a GWT module named com.mycompany.apps.MyApplication. The contents of the .gwt.xml file
specify the precise list of Java classes and other resources that are included in the GWT module.

3.4 What is an entry point class?

A module entry-point is any class that is assignable to EntryPoint and that can be constructed without parameters. When a
module is loaded, every entry point class is instantiated and its EntryPoint.onModuleLoad() method gets called.

GWT Programming Cookbook 30 / 100

3.5 Which method of the Entry point class is called when the GWT application is
loaded? What happens if there are multiple Entry point classes?

onModuleLoad(). If there are more than one Entry point classes then each of then gets called in the sequence in which they
are defined in the configuration file.

3.6 How do I enable assertions?

The GWT compiler recognizes the -ea flag to generate code for assertions in the compiled JavaScript. Only use assertions for
debugging purposes, not production logic because assertions will only work under GWT’s development mode. By default, they
are compiled away by the GWT compiler so do not have any effect in production mode unless we explicitly enable them.

3.7 What is the default style name of any GWT widget?

By default, the class name for each component is gwt-<classname>. For example, the Button widget has a default style of
gwt-Button and similar way TextBox widgest has a default style of gwt-TextBox.

3.8 What is internationalization?

Internationalization is changing the language of the text based on the locale. For example the browser should display the website
content in Hindi for a user sitting in India and in French for the user accessing the website from France.

3.9 What is the difference between TextResource and ExternalTextResou
rce

The related resource types TextResource and ExternalTextResource provide access to static text content. The main
difference between these two types is that the former interns the text into the compiled JavaScript, while the latter bundles related
text resources into a single file, which is accessed asynchronously.

3.10 How can you set Browser targeted Compilation in GWT?

To reduce the compilation time, choose favorite browser and add the user.agent property in the module configuration file.

3.11 Why doesn’t GWT provide a synchronous server connection option?

GWT’s network operations are all asynchronous, or non-blocking. That is, they return immediately as soon as called, and require
the user to use a callback method to handle the results when they are eventually returned from the server. Though in some cases
asynchronous operations are less convenient to use than synchronous operations, GWT does not provide synchronous operations.

The reason is that most browsers’ JavaScript engines are single-threaded. As a result, blocking on a call to XMLHTTPRequest
also blocks the UI thread, making the browser appear to freeze for the duration of the connection to the server. Some browsers
provide a way around this, but there is no universal solution. GWT does not implement a synchronous network connection
because to do so would be to introduce a feature that does not work on all browsers, violating GWT’s commitment to no-
compromise, cross-browser AJAX. It would also introduce complexity for developers, who would have to maintain two different
versions of their communications code in order to handle all browsers.

GWT Programming Cookbook 31 / 100

3.12 What is GWT ClientBundle?

The resources in a deployed GWT application can be roughly categorized into resources to never cache (.nocache.js), to cache
forever (.cache.html), and everything else (myapp.css). The ClientBundle interface moves entries from the everything-else
category into the cache-forever category.

3.13 What is DataResource in GWT?

A DataResource is the simplest of the resource types, offering a URL by which the contents of a file can be retrieved at
runtime. The main optimization offered is to automatically rename files based on their contents in order to make the resulting
URL strongly-cacheable by the browser. Very small files may be converted into data: URLs on those browsers that support them.

3.14 How to create custom widgets in GWT?

There are three general strategies to follow:

Create a widget that is a composite of existing widgets. The most effective way to create new widgets is to extend the
Composite class. A composite is a specialized widget that can contain another component (typically, a Panel) but behaves
as if it were its contained widget. We can easily combine groups of existing widgets into a composite that is itself a reusable
widget. Some of the UI components provided in GWT are composites: for example, the TabPanel (a composite of a TabBar
and a DeckPanel) and the SuggestBox. Rather than create complex widgets by subclassing Panel or another Widget type,
it’s better to create a composite because a composite usually wants to control which methods are publicly accessible without
exposing those methods that it would inherit from its Panel superclass.

Create an entirely new widget written in the Java language. It is also possible to create a widget from scratch, although it
is trickier since we have to write code at a lower level. Many of the basic widgets are written this way, such as Button and
TextBox.

Create a widget that wraps JavaScript using JSNI methods. When implementing a custom widget that derives directly from
the Widget base class, we may also write some of the widget’s methods using JavaScript. This should generally only be done
as a last resort, as it becomes necessary to consider the cross-browser implications of the native methods that we write, and also
becomes more difficult to debug.

3.15 What is a UiBinder?

UiBinder provides a declarative way of defining User Interface. It helps to separate the programming logic from the UI.

3.16 What is the Same Origin Policy, and how does it affect GWT?

Modern browsers implement a security model known as the Same Origin Policy (SOP). Conceptually, it is very simple, but the
limitations it applies to JavaScript applications can be quite subtle. Simply stated, the SOP states that JavaScript code running on
a web page may not interact with any resource not originating from the same web site. The reason this security policy exists is
to prevent malicious web coders from creating pages that steal web users’ information or compromise their privacy. While very
necessary, this policy also has the side effect of making web developers’ lives difficult.

It’s important to note that the SOP issues are not specific to GWT; they are true of any AJAX application or framework.

3.17 Which class is the superclass of all UI widgets?

com.google.gwt.user.client.ui.UIObject

GWT Programming Cookbook 32 / 100

3.18 What is GWT RPC

The GWT RPC framework makes it easy for the client and server components of web application to exchange Java objects over
HTTP. The server-side code that gets invoked from the client is often referred to as a service. The implementation of the GWT
RPC service is based on a Servlet architecture. Within a client code, we will use a automatically generated proxy class to make
calls to the service. GWT will handle serialization of the Java objects. GWT RPC service is different from SOAP and REST.

3.19 What are Layout Panels?

Layout Panels can contain other widgets. These panels controls the way widget is displayed on User Interface. Every Panel
widget inherits properties from Panel class which in turn inherits properties from Widget class and which in turn inherits
properties from UIObject class.

3.20 How is GWT different from other frameworks?

GWT provides a set of ready-to-use user interface widgets that we can immediately utilize to create new applications. It also
provides a simple way to create innovative widgets by combining the existing ones. We can use IDE to create, debug, and unit-
test our AJAX applications. We can build RPC services to provide certain functionalities that can be accessed asynchronously
from the web applications easily using the GWT RPC framework.

GWT enables us to integrate easily with servers written in other languages, so we can quickly enhance our applications to
provide a much better user experience by utilizing the AJAX framework. GWT has the Java-to-JavaScript compiler to distill our
application into a set of JavaScript and HTML files that we can serve with any web server. This gives us a great feature browser
compatibility.

3.21 What are the features of GWT

Google Web Toolkit (GWT) is a development toolkit to create RICH Internet Application. GWT provides developers option
to write client side application in Java. Application written in GWT is cross-browser compliant. GWT automatically generates
javascript code suitable for each browser

3.22 What can I do to make images and borders appear to load more quickly the
first time they are used?

Use Image.prefetch()

3.23 What is Deferred Binding?

Deferred Binding is GWT’s answer to Java reflection. Every web browser has its own idiosyncrasies, usually lots of them. The
standard Java way of dealing with idiosyncrasies would be to encapsulate the custom code into subclasses, with one subclass
for each supported browser. At runtime, the application would use reflection and dynamic classloading to select the appropriate
subclass for the current environment, load the class, create an instance, and then use that instance as the service provider for the
duration of the program.

This is indeed what GWT does. However, the JavaScript environment in which GWT applications ultimately run simply does not
support dynamic classloading (also known as dynamic binding.) Because dynamic binding is unavailable as a technique to GWT,
GWT instead uses deferred binding. One way to think of this is as “dynamic class-loading that occurs at compile time instead of
execution time.” When the GWT Compiler compiles the Java application, it determines all the different “idiosyncrasies” that it

https://www.w3schools.com/xml/xml_soap.asp
https://rest.elkstein.org/

GWT Programming Cookbook 33 / 100

must support, and generates a separate, tightly streamlined version of the application for that specific configuration. For example,
it generates a different version of the application file for Firefox than it does for Opera.

The GWT Compiler uses Deferred Binding to generate a completely separate version of the application for each language.

3.24 How do I create an app that fills the page vertically when the browser window
resizes?

As of GWT 2.0, creating an application that fills the browser is easy using Layout Panels. LayoutPanels such as DockLay
outPanel and SplitLayoutPanel automatically resize to the size of the window when the browser resizes.

3.25 How do you make a call to the server if you are not using GWT RPC?

To communicate with the server from the browser without using GWT RPC:

• Create a connection to the server, using the browser’s XMLHTTPRequest feature.

• Construct a payload, convert it to a string, and send it to the server over the connection.

• Receive the server’s response payload, and parse it according to the protocol.

3.26 How can I dynamically fetch JSON feeds from other web domains?

Like all AJAX tools, GWT’s HTTP client and RPC libraries are restricted to only accessing data from the same site where the
application was loaded, due to the browser Same Origin Policy. If the application is using JSON, there is a work around to this
limitation using a <script> tag (aka JSON-P).

First, we need an external JSON service which can invoke user defined callback functions with the JSON data as argument. An
example of such a service is GData’s “alt=json-in-script& callback=myCallback” support. Then, we can use JsonpRequestB
uilder to make our call, in a way similar to a RequestBuilder when we’re not making a cross-site request.

3.27 Conclusion

In this article we saw some of the GWT related questions which are quite popular in Interviews. GWT is open source, completely
free, and used by thousands of enthusiastic developers around the world. Its goal is to enable productive development of high-
performance web applications without the developer having to be an expert in browser quirks, XMLHttpRequest, and JavaScript.
The GWT SDK provides a set of core Java APIs and Widgets. These allow you to write AJAX applications in Java and then
compile the source to highly optimized JavaScript that runs across all browsers, including mobile browsers for Android and the
iPhone. Most of the time the interviewer is more interested to know whether the person understands the concept of GWT, very
rarely they are interested to know about the APIs.

GWT Programming Cookbook 34 / 100

Chapter 4

GWT AsyncCallback Example

In previous GWT tutorials we have seen how to setup basic project, how to create GUI using GWT Widgets and few more GUI
related chapters. As part of this tutorial we are going to look into how GWT Web Application interacts with a backend server.

GWT provides a couple of different ways to communicate with a server via HTTP. We can use the GWT Remote Procedure Call
(RPC) framework to transparently make calls to Java servlets. GWT AsynchCAllback is the primary interface that a caller must
implement to receive a response from a RPC.

Here we are using GWT 2.7 integrated with Eclipse Mars 4.5.

4.1 Introduction

Typically Client communicates with server uses RPC (Remote Procedure Call). RPC is essentially a way of invoking a method
in a class, however the only difference is that the class is located on a server, not actually the part of client program you are
running. There is a problem with RPC, as Javascripts runs in web browser and the RPC call from browser hangs browser until
the response is received. To avoid the browser hanging, GWT RPC call is made "Asynchronous" and the browser does not hang
while waiting for the response.

4.2 GWT RPC Mechanism

The implementation of GWT RPC is based on the Java Servlet technology. GWT allows Java Objects to communicate between
the client and the server; which are automatically serialized by the framework. The server-side code that gets invoked from the
client is usually referred to as a service and the remote procedure call is referred as invoking a service. Below diagram shows the
RPC implementation in a GWT application.

https://examples.javacodegeeks.com/enterprise-java/gwt/gwt-tutorial-beginners/
https://examples.javacodegeeks.com/enterprise-java/gwt/gwt-panel-example/
https://www.gwtproject.org/versions.html
https://eclipse.org/mars/

GWT Programming Cookbook 35 / 100

Figure 4.1: GWT RPC Mechanism

4.3 Creating Service

An interface at client-side that defines all service methods and the only way to communicate between client and server. The
service is available at client-side, therefore it must be placed in the client package.

4.3.1 Define service Interface

To develop a new service interface, we will be creating a client-side Java interface that extends the RemoteService interface.

SampleService.java

import com.google.gwt.user.client.rpc.RemoteService;
import com.google.gwt.user.client.rpc.RemoteServiceRelativePath;

@RemoteServiceRelativePath("sampleservice")
public interface SampleService extends RemoteService{

String sayHello(String name);
}

GWT Programming Cookbook 36 / 100

4.3.2 Define Async Service Interface

The service will be erroneous until we define the same service inside Async interface with return type void and the callback
object for the Async service. The name of this interface must be the service interface name concatenated with "Async".

SampleServiceAsync.java

import com.google.gwt.user.client.rpc.AsyncCallback;

public interface SampleServiceAsync {

void sayHello(String name, AsyncCallback callback);

}

4.3.3 Implementing AsynchCallback and handling its Failure

The interface AsyncCallback defines two methods OnSuccess and OnFailure. A class needs to be implemented to receive a
callback from server and provide functionality on failure/success in the communication.

SampleCallback.java

import com.google.gwt.user.client.Window;
import com.google.gwt.user.client.rpc.AsyncCallback;

/**
* Class which handles the asynchronous callback from the server

*
* Need to react on server communication failure and success

*/
public class SampleCallback implements AsyncCallback {

@Override
public void onFailure(Throwable caught) {

// handle failure from server.
Window.alert("Not able to process client reuest. Exception occured at ←↩

server: " + caught);
}

@Override
public void onSuccess(String result) {

// handle the successful scenario.
Window.alert("Client request processed sucessfully. Result from server: " + ←↩

result);
}

}

4.4 Implementing Service

Services are responsible to perform some processing to respond to client requests. Such server-side processing occurs in the
service implementation, which is based on the well-known servlet architecture.

4.4.1 Define Service Interface Implementation

GWT service implementation must extend RemoteServiceServlet and must implement the associated service interface.
Every service implementation is ultimately a servlet. However it extends RemoteServiceServlet instead of HttpServ

GWT Programming Cookbook 37 / 100

let. RemoteServiceServlet automatically handles serialization of the data being passed between the client and the server
and invoking the intended method in your service implementation.

SampleServiceImpl.java

import com.google.gwt.user.server.rpc.RemoteServiceServlet;
import com.javacodegeeks.helloworld.client.service.SampleService;

public class SampleServiceImpl extends RemoteServiceServlet implements SampleService {

@Override
public String sayHello(String name) {

return "Hello " + name;
}

}

4.4.2 Update entry of Service inside web.xml

Define the servlet and map the URL to particular service by using the short-cute name of the service or fully qualified name of
the service.

web.xml

<!-- Servlets -->
<servlet>

<servlet-name>sampleServlet</servlet-name>
<servlet-class<com.javacodegeeks.helloworld.server.SampleServiceImpl</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>sampleServlet>/servlet-name>
<url-pattern>/samplewebapplication/sampleservice</url-pattern>

</servlet-mapping>
</pre>

4.5 Example

This shows that the user enters value inside and test box and clicks on button and a client request goes to server and response is
getting handled on GUI. On successful completion, the label gets updated otherwise an alert windows apeears.

SampleWebApplication.java

/**
* Entry point classes define ‘onModuleLoad()‘.

*/
public class SampleWebApplication implements EntryPoint, ClickHandler{

/**
* Instantiates service.

*/
SampleServiceAsync sampleServiceAsync = GWT.create(SampleService.class);
/**
* Label & Text Box.

*/
Label lbl; TextBox textBox;
/**
* This is the entry point method.

*/
public void onModuleLoad() {

GWT Programming Cookbook 38 / 100

VerticalPanel verticalPanel = new VerticalPanel();
verticalPanel.setSize("100%", "100%");
verticalPanel.setVerticalAlignment(HasVerticalAlignment.ALIGN_MIDDLE);
verticalPanel.setHorizontalAlignment(HasHorizontalAlignment.ALIGN_CENTER);
textBox = new TextBox();
Button btn = new Button("Get Update from Server"); btn.addClickHandler(this ←↩

);
lbl = new Label("The text will be updated here.");
Image image = new Image();
image.setUrl("https://www.javacodegeeks.com/wp-content/uploads/2012/12/ ←↩

JavaCodeGeeks-logo.png");

verticalPanel.add(textBox); verticalPanel.add(btn); verticalPanel.add(lbl);
verticalPanel.add(image);

RootLayoutPanel.get().add(verticalPanel);
}

@Override
public void onClick(ClickEvent event) {

sampleServiceAsync.sayHello(textBox.getText(), new AsyncCallback() {

@Override
public void onFailure(Throwable caught) {

// handle failure from server.
Window.alert("Exception Received from server.");

}

@Override
public void onSuccess(String result) {

lbl.setText(result);
}

});
}

}

Output:

Check Video Output

4.6 Project References

Using GWT RPC

GWT API Reference

4.7 Download Eclipse Project

Download

You can download the full source code of this example here: GWT AsyncCallback Example

https://examples.javacodegeeks.com/wp-content/uploads/2016/08/Example_RPC_updated.mp4
https://www.gwtproject.org/doc/latest/tutorial/RPC.html
https://www.gwtproject.org/javadoc/latest/com/google/gwt/user/client/rpc/AsyncCallback.html
https://examples.javacodegeeks.com/wp-content/uploads/2016/08/GWTAsynchCallbackExamples.zip

GWT Programming Cookbook 39 / 100

Chapter 5

GWT Panel Example

5.1 Overview

In this tutorial, we will get to know about Google Web Toolkit (GWT) Panels and we shall see how to use GWT Panels in a GWT
Web Application to design user interface. In our previous tutorial GWT Tutorial for Beginners , we explained how to create a
GWT Web Application project using eclipse and we have seen the basic steps to develop user interface using widgets. In this
tutorial we shall see how to use different type of Panels to develop user interface.

5.2 Introduction

Panels in a GWT Web Application are used to set the layout of the Application. GWT Panels use HTMP element such as DIV and
TABLE to layout their child Widgets. It is similar to use LayoutManagers in desktop Java Application. Panels contain Widgets
and other Panels. They are used to define the layout of the user interface in the browser.

Here we are using GWT 2.7 integrated with Eclipse Mars 4.5.

5.3 Layout of a GWT Web Application UI

Layout design of user interface can be controlled via HTML and Java. A typical user interface comprises of Top-level panel and
simple panels. Top-level panels are usually DeckLayoutPanel, TabLaypitPanel, StacklayoutPanel etc. Simple
Panels or Basic Panels are FlowPanel, HTMLPanel, FormPanel, ScrollPanel, Grid, FlexTable etc. Each panel
can contain other panels.

5.4 Basic Panels

5.4.1 RootPanel

RootPanel is the top most Panel to which all other Widgets are ultimately attached. RootPanels are never created directly. On
the other hand, they are accessed via RootPanel.get(). It returns a singleton panel that wraps the GWT Web Application’s
welcome HTML page’s body element. To achieve more control over user interface via HTML, we can use RootPanel.get(S
tring argument) that returns a panel for any other element on the HTML page against provided argument.

Frequently used methods:

https://examples.javacodegeeks.com/enterprise-java/gwt/gwt-tutorial-beginners/
https://www.gwtproject.org/versions.html
https://eclipse.org/mars/

GWT Programming Cookbook 40 / 100

Method Name Description
public static RootPanel.get() Gets the default root panel. This panel wraps the body of

the browser’s document.
public static RootPanel.get(String id) Gets the root panel associated with a given browser

element against the provided element’s id.

Refer RootPanel Javadoc for detailed api description.

SampleRootPanel.java

/**
* This is the entry point method.

*/
public void onModuleLoad() {

Label lbl = new Label("This Label is added to Root Panel.");
/*
* Adding label into HTML page.

*/
RootPanel.get().add(lbl);

}

Output:

https://www.gwtproject.org/javadoc/latest/com/google/gwt/user/client/ui/RootPanel.html

GWT Programming Cookbook 41 / 100

Figure 5.1: Example RootPanel.

5.4.2 FlowPanel

A FlowPanel is the simplest panel that formats its child widgets using the default HTML layout behavior. A FlowPanel is
rendered as an HTML div and attaches children directly to it without modification. Use it in cases where you want the natural
HTML flow to determine the layout of child widgets.

Frequently used methods:

Method Name Description
public void add(Widget w) Adds a new child widget to the panel.

Refer FlowPanel Javadoc for detailed api description.

SampleFlowPanel.java

https://www.gwtproject.org/javadoc/latest/com/google/gwt/user/client/ui/FlowPanel.html

GWT Programming Cookbook 42 / 100

/**
* This is the entry point method.

*/
public void onModuleLoad() {

FlowPanel flowPanel = new FlowPanel();
// Add buttons to flow Panel
for(int i = 1; i <= 8; i++){

Button btn = new Button("Button " + i);
flowPanel.add(btn);

}

// Add the Flow Panel to the root panel.
RootPanel.get().add(flowPanel);

}

Output:

GWT Programming Cookbook 43 / 100

Figure 5.2: Example FlowPanel

5.4.3 HTMLPanel

An HTMLPanel rendered with the specified HTML contents. Child widgets can be added into identified elements within that
HTML contents.

Frequently used methods:

Method Name Description
public HTMLPanel(String html) Creates an HTML panel with the specified HTML contents

inside a DIV element.

GWT Programming Cookbook 44 / 100

Refer HTMLPanel Javadoc for detailed api description.

SampleHTMLPanel.java

/**
* This is the entry point method.

*/
public void onModuleLoad(){

// Add buttons to html Panel
String htmlString = "This HTMLPanel contains"

+" html contents. This shows sample text inside HTMLPanel.";
HTMLPanel htmlPanel = new HTMLPanel(htmlString);

// Add the HTML Panel to the root panel.
RootPanel.get().add(htmlPanel);

}

Output:

https://www.gwtproject.org/javadoc/latest/com/google/gwt/user/client/ui/HTMLPanel.html

GWT Programming Cookbook 45 / 100

Figure 5.3: Example HTMLPanel

5.4.4 FormPanel

The panel provides the behavior of an HTML FORM element. Any widgets added to this panel will be wrapped inside HTML
form element. The panel can be used to achieve interoperability with servers that accept traditional HTML form encoding.

Frequently used methods:

Method Name Description

GWT Programming Cookbook 46 / 100

public HandlerRegistration
addSubmitCompleteHandler(SubmitCompleteHandler
handler)

Adds a SubmitCompleteEvent handler.

public HandlerRegistration
addSubmitHandler(SubmitHandler handler)

Adds a SubmitEvent handler.

Refer FormPanel Javadoc for detailed api description.

SampleFormPanel.java

/**
* This is the entry point method.

*/
public void onModuleLoad() {

// Create a FormPanel and point it at a service.
final FormPanel form = new FormPanel();
form.setAction("/myFormHandler");

// Because we’re going to add a FileUpload widget, we’ll need to set the
// form to use the POST method, and multipart MIME encoding.
form.setEncoding(FormPanel.ENCODING_MULTIPART);
form.setMethod(FormPanel.METHOD_POST);

// Create a panel to contains all of the form widgets.
VerticalPanel panel = new VerticalPanel();
panel.setBorderWidth(1);
panel.setSpacing(4);
form.setWidget(panel);

// Create a TextBox, giving it a name so that it will be submitted.
final TextBox tb = new TextBox();
tb.setName("textBoxForm");
panel.add(tb);

// Create a ListBox, giving it a name and some values to be associated with
// its options.
ListBox lb = new ListBox();
lb.setName("listBoxForm");
lb.addItem("list1", "List1 Value");
lb.addItem("list2", "List2 Value");
lb.addItem("list3", "List3 Value");
panel.add(lb);

// Create a FileUpload widget.
FileUpload upload = new FileUpload();
upload.setName("uploadForm");
panel.add(upload);

// Adding a submit button.
panel.add(new Button("Submit", new ClickHandler() {

@Override
public void onClick(ClickEvent event) {

form.submit();
}

}));

// Adding an event handler to the form.
form.addSubmitHandler(new FormPanel.SubmitHandler() {

public void onSubmit(SubmitEvent event) {
// This event is fired just before the form is submitted.
// this provides opportunity to perform validation.
if (tb.getText().length() == 0) {

https://www.gwtproject.org/javadoc/latest/com/google/gwt/user/client/ui/FormPanel.html

GWT Programming Cookbook 47 / 100

Window.alert("Text box must not be empty");
event.cancel();

}
}

});
form.addSubmitCompleteHandler(new FormPanel.SubmitCompleteHandler() {

public void onSubmitComplete(SubmitCompleteEvent event) {
// This event fired after the form submission is successfully ←↩

completed.
// Assuming the service returned a response of type text/html,
// we can get the result text here.
Window.alert(event.getResults());

}
});

RootPanel.get().add(form);
}

Output:

GWT Programming Cookbook 48 / 100

Figure 5.4: Example FormPanel

5.4.5 ScrollPanel

A Simple panel that wraps its contents into a scrollable area. Using constructor scrollPanle() and scrolPanle(Widget
w) we can create empty scroll panel and scroll panel with given widget.

Frequently used methods:

Method Name Description

GWT Programming Cookbook 49 / 100

public ScrollPanel(Widget child) Creates a new scroll panel with the given child widget.
public void setSize(String width, String height) Sets the object’s size.

Refer ScrollPanel Javadoc for detailed api description.

SampleScrollPanel.java

/**
* This is the entry point method.

*/
public void onModuleLoad() {

// scrollable text
HTML htmlString = new HTML("This *HTMLPanel* contains"

+"This is sample text inside the scrollable panel. "
+ "This content should be big enough to enable the scrolling. "
+ "We added the same content here again and again to make the "
+ "content large enough. This is text inside the scrollable panel."
+ " This content should be big enough to enable the scrolling."
+ " This is text inside the scrollable panel. This content should "
+ "be big enough to enable the scrolling. This is text inside the "
+ "scrollable panel. This content should be big enough to enable"
+ " the scrolling. This is text inside the scrollable panel."
+ " This content should be big enough to enable the scrolling."
+ " This is text inside the scrollable panel. This content "
+ "should be big enough to enable the scrolling.");

// scrollpanel with text
ScrollPanel scrollPanel = new ScrollPanel(htmlString);
scrollPanel.setSize("400px", "150px");

// Adding the scroll panel to the root panel.
RootPanel.get().add(scrollPanel);

}

Output:

https://www.gwtproject.org/javadoc/latest/com/google/gwt/user/client/ui/ScrollPanel.html

GWT Programming Cookbook 50 / 100

Figure 5.5: Example ScrollPanel

5.4.6 Grid

A Grid is used to create traditional HTML table. It extends HTMLTable. Grid which can contain text, HTML, or a child Widget
within its cells. It can be configured as per required number of rows and columns.

Frequently used methods:

Method Name Description
public Grid(int rows, int columns) Constructs a grid with the requested size.

GWT Programming Cookbook 51 / 100

public void setWidget(int row, int column, Widget widget) Sets the widget within the specified cell. It belongs to it’s
parent class HTMLTable.

Refer Grid Javadoc for detailed api description.

SampleGrid.java

/**
* This is the entry point method.

*/
public void onModuleLoad() {

// Create a grid
Grid grid = new Grid(2, 2);
grid.setBorderWidth(1);

// Add buttons, checkboxes to the grid
int rows = grid.getRowCount();
int columns = grid.getColumnCount();
for (int row = 0; row < rows; row++) {

for (int col = 0; col < columns; col++) {
if (row == 0) {

grid.setWidget(row, col, new Button("Button " + row + col)) ←↩
;

} else {
grid.setWidget(row, col, new CheckBox("CheckBox " + row + ←↩

col));
}

}
}

// Adding grid to the root panel.
RootPanel.get().add(grid);

}

Output:

https://www.gwtproject.org/javadoc/latest/com/google/gwt/user/client/ui/Grid.html

GWT Programming Cookbook 52 / 100

Figure 5.6: Example Grid

5.4.7 FlexTable

FlexTable also extends HTMLTable like Grid. This table creates cells on demand. Individual cells inside the table can be
set to span multiple rows or columns based on indexes.

Frequently used methods:

Method Name Description
public void setWidget(int row, int column, Widget widget) Sets the widget within the specified cell. It belongs to it’s

parent class HTMLTable.

GWT Programming Cookbook 53 / 100

public void removeRow(int row) Removes the specified row from the table.

Refer FlexTable Javadoc for detailed api description.

SampleFlexTable.java

/**
* This is the entry point method.

*/
public void onModuleLoad() {

// Create a Flex Table
final FlexTable flexTable = new FlexTable();
// Add button that will add more rows to the table
Button addBtn = new Button(" Add Button ", new ClickHandler() {

@Override
public void onClick(ClickEvent event) {

addRow(flexTable);
}

});
addBtn.setWidth("120px");
// Remove button that will add more rows to the table
Button removeBtn = new Button("Remove Button", new ClickHandler() {

@Override
public void onClick(ClickEvent event) {

removeRow(flexTable);
}

});
removeBtn.setWidth("120px");
VerticalPanel buttonPanel = new VerticalPanel();
buttonPanel.add(addBtn);
buttonPanel.add(removeBtn);
flexTable.setWidget(0, 2, buttonPanel);

// Add two rows to start
addRow(flexTable);
addRow(flexTable);
RootPanel.get().add(flexTable);

}

/**
* Add a row to the flex table.

*/
private void addRow(FlexTable flexTable) {

int numRows = flexTable.getRowCount();
flexTable.setWidget(numRows, 0, new Button("Button at column " + "0"));
flexTable.setWidget(numRows, 1, new Button("Button at column " + "1"));

}

/**
* Remove a row from the flex table.

*/
private void removeRow(FlexTable flexTable) {

int numRows = flexTable.getRowCount();
if (numRows > 1) {

flexTable.removeRow(numRows - 1);
}

}

https://www.gwtproject.org/javadoc/latest/com/google/gwt/user/client/ui/FlexTable.html

GWT Programming Cookbook 54 / 100

Output:

Check Video Output

5.5 LayoutPanels

LayoutPanel is the most general approach to design layout. Mostly other layouts are built upon it. LayoutPanel always tries to
fill all the available size in the window, so the content inside of the panel will perfectly fit the browser window size. LayoutPanel
follows the size of the browser window, and try to resizes child elements accordingly. Whereas Panel’s child widgets are not
automatically resized when the browser window resizes.

It is notable that this panel works in standard mode, which requires that the HTML page in which it is run has an explicit
!DOCTYPE declaration.

5.5.1 RootLayoutPanel

A singleton implementation of LayoutPanel always attaches itself to the element of GWT Web Application Welcome HTML Page.
You can’t choose which HTML element on the welcome page will become a starting point unlike RootPanel. This panel
automatically calls RequiresResize.onResize() on itself when initially created, and whenever the window is resized.

Frequently used methods:

Method Name Description
public static RootLayoutPanel get() Gets the singleton instance of RootLayoutPanel. This

instance will always be attached to the document body.

Refer RootLayoutPanel Javadoc for detailed api description.

SampleRootLayoutPanel.java

/**
* This is the entry point method.

*/
public void onModuleLoad() {

// Attach two child widgets to a LayoutPanel, laying them out horizontally,
// splitting at 50%.
Widget childOne = new HTML("left");
Widget childTwo = new HTML("right");
LayoutPanel p = new LayoutPanel();
p.add(childOne);
p.add(childTwo);

p.setWidgetLeftWidth(childOne, 0, Unit.PCT, 50, Unit.PCT);
p.setWidgetRightWidth(childTwo, 0, Unit.PCT, 50, Unit.PCT);

// Attach the LayoutPanel to the RootLayoutPanel.
RootLayoutPanel.get().add(p);

}

Output:

https://examples.javacodegeeks.com/wp-content/uploads/2016/06/ExampleFlexTable.mp4
https://www.gwtproject.org/javadoc/latest/com/google/gwt/user/client/ui/RootLayoutPanel.html

GWT Programming Cookbook 55 / 100

Figure 5.7: Example RootLayoutPanel

5.5.2 DockLayoutPanel

A panel that lays its child widgets at its outer edges, and allows its last widget to take up the remaining space in its center.This
widget will also work only in standards mode, which requires that GWT Web Application welcome HTML page contains !DOC-
TYPE declaration.

Frequently used methods:

GWT Programming Cookbook 56 / 100

Method Name Description

public DockLayoutPanel(Unit unit) Creates an empty dock panel. Provide the unit to be used
for layout.

public void add(Widget widget) Adds a widget at the center of the dock.
public void addEast(Widget widget, double size) Adds a widget to the east edge of the dock.
public void addNorth(Widget widget, double size) Adds a widget to the north edge of the dock.
public void addSouth(Widget widget, double size) Adds a widget to the south edge of the dock.
public void addWest(Widget widget, double size) Adds a widget to the west edge of the dock.

Refer DockLayoutPanel Javadoc for detailed api description.

SampleDockLayoutPanel.java

/**
* This is the entry point method.

*/
public void onModuleLoad() {

// Attach five widgets to a DockLayoutPanel, one in each direction. Lay
// them out in ’em’ units.
DockLayoutPanel p = new DockLayoutPanel(Unit.EM);
p.addNorth(new HTML("north"), 8);
p.addSouth(new HTML("south"), 8);
p.addEast(new HTML("east"),8);
p.addWest(new HTML("west"), 8);
p.add(new HTML("center"));

// Attach the DockLayoutPanel to the RootLayoutPanel.
RootLayoutPanel rp = RootLayoutPanel.get();
rp.add(p);

}

Output:

https://www.gwtproject.org/javadoc/latest/com/google/gwt/user/client/ui/DockLayoutPanel.html

GWT Programming Cookbook 57 / 100

Figure 5.8: Example DockLayoutPanel

5.5.3 SplitLayoutPanel

This panel extends DockLayoutPanel. The panel is used in the same way as DockLayoutPanel, except that its
children’s sizes are always specified in absolute value, and each pair of child widget has a splitter between them, that the user
can drag.

Frequently used methods:

GWT Programming Cookbook 58 / 100

Method Name Description
public SplitLayoutPanel() Construct a new SplitLayoutPanel with the default splitter

size of 8px.

Refer SplitLayoutPanel Javadoc for detailed api description.

SampleSplitLayoutPanel.java

/**
* This is the entry point method.

*/
public void onModuleLoad() {

// Create a three-pane layout with splitters.
SplitLayoutPanel p = new SplitLayoutPanel();
p.addWest(new HTML("Navigation Tree"), 128);
p.addNorth(new HTML("Panel 1"), 384);
p.add(new HTML("Panel 2"));

// Attach the LayoutPanel to the RootLayoutPanel.
RootLayoutPanel rp = RootLayoutPanel.get();
rp.add(p);

}

Output:

https://www.gwtproject.org/javadoc/latest/com/google/gwt/user/client/ui/SplitLayoutPanel.html

GWT Programming Cookbook 59 / 100

Figure 5.9: Example SplitLayoutPanel

5.5.4 StackLayoutPanel

The panel stacks its children vertically, displaying only one at a time, with a header for each child which the user can click to
display.

This widget will only work in standards mode as well.

Frequently used methods:

GWT Programming Cookbook 60 / 100

Method Name Description
public StackLayoutPanel(Unit unit) Creates an empty stack panel. Provide the unit to be used

for layout.
public void add(final Widget widget, SafeHtml header,
double headerSize)

Adds a child widget to this stack, along with a widget
representing the stack header.

Refer StackLayoutPanel Javadoc for detailed api description.

SampleStackLayoutPanel.java

/**
* This is the entry point method.

*/
public void onModuleLoad() {

// Create a three-item stack, with headers sized in EMs.
StackLayoutPanel p = new StackLayoutPanel(Unit.EM);
p.add(new HTML("this"), new HTML("[this]"), 4);
p.add(new HTML("that"), new HTML("[that]"), 4);
p.add(new HTML("the other"), new HTML("[the other]"), 4);

// Attach the StackLayoutPanelto the RootLayoutPanel.
RootLayoutPanel rp = RootLayoutPanel.get();
rp.add(p);

}

Output:

https://www.gwtproject.org/javadoc/latest/com/google/gwt/user/client/ui/StackLayoutPanel.html

GWT Programming Cookbook 61 / 100

Figure 5.10: Example StackLayoutPanel

5.5.5 TabLayoutPanel

A panel represents a tabbed set of pages, each of which contains another widget. It’s child widgets are shown as the user selects
the various tabs associated with them. The tabs can contain arbitrary text, HTML, or widgets. This widget will only work in
standards mode as well.

Frequently used methods:

GWT Programming Cookbook 62 / 100

Method Name Description
public TabLayoutPanel(double barHeight, Unit barUnit) Creates an empty tab panel.
public void add(Widget child, String text) Adds a widget to the panel. If the Widget is already

attached, it will be moved to the right-most index.

Refer TabLayoutPanel Javadoc for detailed api description.

SampleTabLayoutPanel.java

/**
* This is the entry point method.

*/
public void onModuleLoad() {

// Create a three-item tab panel, with the tab area 1.5em tall.
TabLayoutPanel p = new TabLayoutPanel(1.5, Unit.EM);
p.add(new HTML("tab1 content"), "TAB1");
p.add(new HTML("tab2 content"), "TAB2");
p.add(new HTML("tab3 content"), "TAB3");

// Attach the TabLayoutPanel to the RootLayoutPanel.
RootLayoutPanel rp = RootLayoutPanel.get();
rp.add(p);

}

Output:

https://www.gwtproject.org/javadoc/latest/com/google/gwt/user/client/ui/TabLayoutPanel.html

GWT Programming Cookbook 63 / 100

Figure 5.11: Example TabLayoutPanel

5.6 Project References

GWT UIPanels

GWT API Reference

GWT Showcase of Features

https://www.gwtproject.org/doc/latest/DevGuideUiPanels.html
https://www.gwtproject.org/javadoc/latest/
https://samples.gwtproject.org/samples/Showcase/Showcase.html

GWT Programming Cookbook 64 / 100

5.7 Download Eclipse Project

Download

You can download the full source code of this example here: GWTPanelExamples

https://examples.javacodegeeks.com/wp-content/uploads/2016/06/GWTPanelExamples.zip

GWT Programming Cookbook 65 / 100

Chapter 6

GWT HTMLPanel Example

In this tutorial, we will learn ins and out of the Google Web Toolkit (GWT) HTML Panel. In our previous tutorial GWT Tutorial
for Beginners, we explained how to create a GWT Web Application project using eclipse and we have seen the basic steps to
develop user interface using widgets. In this tutorial, we will focus on GWT HTML panel and it’s usage to develop user interface.

Here we are using GWT 2.7 integrated with Eclipse Mars 4.5.

6.1 Introduction

Panels in a GWT Web Application are used to set the layout of the Application. GWT Panels use HTML element such as DIV
and TABLE to layout their child Widgets. Panels may contain Widgets and other Panels. They are used to define the layout of
the user interface in the browser. An HTMLPanel rendered with the specified HTML contents. Child widgets can be added into
identified elements within that HTML contents.

6.2 Class Declaration

HTMLPanel.java

public class HTMLPanel extends ComplexPanel {
......

}

Here ComplexPanel is an abstract base class for HTMLPanel that can contain multiple child widgets. ComplexPanel
extends Panel which is abstract base class for all panels.

6.3 Constructors

6.3.1 HTMLPanel(String html)

Creates an HTMLPanel with the specified HTML contents inside a DIV element.

SampleWebApplication.java

/**
* This is the entry point method.

*
*/

public void onModuleLoad(){

https://examples.javacodegeeks.com/enterprise-java/gwt/gwt-tutorial-beginners/
https://examples.javacodegeeks.com/enterprise-java/gwt/gwt-tutorial-beginners/
https://www.gwtproject.org/versions.html
https://eclipse.org/mars/

GWT Programming Cookbook 66 / 100

// Creating HTML String.
String htmlString ="Example shows HTML Panel constructed through HTML String
<br ←↩

>"
+ "|======================="
+ ""
+ "<th>FirstName</th><th>LastName</th><th>Age</th>"
+ ""
+ ""
+ "|Bob|Sen|68"
+ ""
+ "|=======================";

HTMLPanel htmlPanel = new HTMLPanel(htmlString);

// Add the HTML Panel to the root panel.
RootPanel.get().add(htmlPanel);

}

Output:

GWT Programming Cookbook 67 / 100

Figure 6.1: HTMP Panel: HTMLPanel(String html)

6.3.2 HTMLPanel(SafeHtml safeHtml)

Initializes the panel’s HTML from a given SafeHtml object. Similar to HTMLPanel(String).

SampleWebApplication.java

/**
* This is the entry point method.

*
*/

public void onModuleLoad(){

// Creating HTML String.

GWT Programming Cookbook 68 / 100

String safeHtml= SafeHtmlUtils.fromSafeConstant(
"Example shows HTML Panel constructed through ←↩

Safe HTML.

"
+ "|======================="
+ ""
+ "<th>FirstName</th><th>LastName</th><th>Age</th>"
+ ""
+ ""
+ "|Bob|Sen|68"
+ ""
+ "|=======================");

HTMLPanel htmlPanel = new HTMLPanel(safeHtml);

// Add the HTML Panel to the root panel.
RootPanel.get().add(htmlPanel);

}

Output:

GWT Programming Cookbook 69 / 100

Figure 6.2: HTMP Panel: HTMLPanel(SafeHtml safeHtml)

6.3.3 HTMLPanel(String tag, String html)

Creates an HTMLPanel whose root element has the given tag, and with the specified HTML contents. The arguments passed
inside the constructor are Tag of the root element and the panel’s HTML content.

SampleWebApplication.java

/**
* This is the entry point method.

*
*/

public void onModuleLoad(){

GWT Programming Cookbook 70 / 100

// Create HTML Panel with given tag and its HTML value.
HTMLPanel htmlPanelH1 = new HTMLPanel("h1", "Heading using HTML tag: h1");
HTMLPanel htmlPanelH2 = new HTMLPanel("h2", "Heading using HTML tag: h2");
HTMLPanel htmlPanelH3 = new HTMLPanel("h3", "Heading using HTML tag: h3");

VerticalPanel vp = new VerticalPanel();
vp.setSize("100%", "100%");vp.setHorizontalAlignment(HasHorizontalAlignment. ←↩

ALIGN_CENTER);
vp.add(htmlPanelH1);
vp.add(htmlPanelH2);
vp.add(htmlPanelH3);
// Add the HTML Panel to the root panel.
RootPanel.get().add(vp);

}

Output:

GWT Programming Cookbook 71 / 100

Figure 6.3: HTMLPanel: HTMLPanel(String tag, String html)

6.4 Method Summary

Method Signature Description
public void add(Widget widget) Adds a child widget to the panel.
public void add(Widget widget, String id) Adds a child widget to the panel, contained within the

HTML element specified by a given id.
public void add(Widget widget, Element elem) Adds a child widget to the panel, contained within an

HTML element.
public final void addAndReplaceElement(Widget widget,
Element toReplace)

Adds a child widget to the panel, replacing the HTML
element.

GWT Programming Cookbook 72 / 100

public void addAndReplaceElement(Widget widget,
String id)

Adds a child widget to the panel, replacing the HTML
element specified by a given id.

public Element getElementById(String id) Finds an Element within this panel by its id.

6.5 Examples

6.5.1 Login Page using HTMLPanel

Here we designed the login page using HTMLPanel. User enters Username/Password and validations can be performed on click
of submit button.

SampleWebApplication.java

/**
* This is the entry point method.

*/
public void onModuleLoad() {

String html =
"" +

"" +
"<label>UserName
" +

"" +
"" +

"<label>Password
" +
"" +
"" +
"" +

"";

HTMLPanel htmlPanel = new HTMLPanel(html);

// The username field
TextBox user = new TextBox();
user.getElement().setId("user_name");
htmlPanel.add(user, "uname");

// The password field
TextBox password = new PasswordTextBox();
password.getElement().setId("user_password");
htmlPanel.add(password, "password");

// The log in button
Button submit = new Button("Submit");
submit.getElement().setId("submit");
htmlPanel.add(submit, "submit");

submit.addClickHandler(new ClickHandler() {

@Override
public void onClick(ClickEvent event) {

// Perform Validations
error("|=======================<th>"
+ "ErrorType</th><th>Error "

+ "Description</th>|Fatal|"
+ "Incorrect Password|=======================");

}
});
/*
* Add panel to the page

GWT Programming Cookbook 73 / 100

*/
RootPanel.get().add(htmlPanel);

}

Output:

Figure 6.4: Example1 HTMLPanel

6.5.2 Error Dialog Page using HTMLPanel

Error Dialog Page is using HTMLPanel and capable to display error message. The error message can be customized using
HTML tags. This example is an extension of Login page example where Error Dialog Page pops up on click of submit button.

SampleWebApplication.java

GWT Programming Cookbook 74 / 100

/**
* Custom Error Dialog Page.

* @param err error message text

*/
public void error(String err) {

final DialogBox dialog = new DialogBox();dialog.center();
dialog.setSize("80%", "80%");dialog.setText("Error");

VerticalPanel panel = new VerticalPanel();panel.setSize("100%", "100%");
HTMLPanel html = new HTMLPanel(err);html.setSize("100%", "100%");
panel.add(html);

Button ok = new Button("OK");
VerticalPanel buttonPanel = new VerticalPanel(); buttonPanel.setSpacing(3);
buttonPanel.add(ok);
panel.add(buttonPanel);

dialog.setWidget(panel);

ok.addClickHandler(new ClickHandler() {

public void onClick(ClickEvent arg0) {
dialog.hide();

}

});
dialog.show();

}

Output

GWT Programming Cookbook 75 / 100

Figure 6.5: Example2 HTMLPanel

6.6 Project References

GWT UIPanels

GWT API Reference

6.7 Download Eclipse Project

Download

You can download the full source code of this example here: GWT HTMLPanel Example

https://www.gwtproject.org/doc/latest/DevGuideUiPanels.html
https://www.gwtproject.org/javadoc/latest/com/google/gwt/user/client/ui/HTMLPanel.html
https://examples.javacodegeeks.com/wp-content/uploads/2016/07/GWTHTMLPanelzip.zip

GWT Programming Cookbook 76 / 100

Chapter 7

GWT Scroll Panel Example

In this example we will learn how to use Scroll Panel widget in GWT. Google Web Toolkit is a development framework for
creating Ajax-enabled web applications in Java. Tools and technologies used in this example are Java 1.8, Eclipse Luna 4.4.2,
Eclipse GWT Plugin 2.6

7.1 Introduction

When you wish to create a scrollable area within another panel, you should use a ScrollPanel. This panel works well
in layout panels, which provide it with the explicit size it needs to scroll properly. ScrollPanel class extends the com.
google.gwt.user.client.ui.SimplePanel class and implements four interfaces. It is a simple panel that wraps its
contents in a scrollable area.

public class ScrollPanel extends SimplePanel implements SourcesScrollEvents, RequiresResize ←↩
, ProvidesResize, HasScrolling

7.1.1 Constructors

Below we see the constructors for this class.

public ScrollPanel()

Creates an empty scroll panel.

public ScrollPanel(Widget child)

Creates a new scroll panel with the given child widget.

Parameters: child - the widget to be wrapped by the scroll panel

protected ScrollPanel(Element root, Element scrollable, Element container)

Creates an empty scroll panel using the specified root, scrollable, and container elements.

Parameters:

• root - the root element of the Widget

• scrollable - the scrollable element, which can be the same as the root element

• container - the container element that holds the child

GWT Programming Cookbook 77 / 100

7.2 Creating GWT project

To create a new GWT project go to File→New→Other, then type ‘Web App’. Choose ‘Web Application Project’ under ‘Google’.

Figure 7.1: Create New Web Application

On the next window enter the Project name (‘GWTScrollPanel’) and the Package (com.javacodegeeks). Leave the other details
as it is and click on ‘Finish’. Eclipse will generate some files automatically for you.

GWT Programming Cookbook 78 / 100

Figure 7.2: Create Project

GWT Programming Cookbook 79 / 100

7.3 Entry point class

GWTScrollPanel class is our entry point class.

GWTScrollPanel.java

package com.javacodegeeks.client;

import com.google.gwt.core.client.EntryPoint;
import com.google.gwt.user.client.ui.DecoratorPanel;
import com.google.gwt.user.client.ui.HTML;
import com.google.gwt.user.client.ui.RootPanel;
import com.google.gwt.user.client.ui.ScrollPanel;

/**
* Entry point classes define <code>onModuleLoad()</code>.

*/
public class GWTScrollPanel implements EntryPoint {

/**
* This is the entry point method.

*/
public void onModuleLoad() {
HTML contents = new HTML("This is an example of GWT scroll panel. ScrollPanel class ←↩

extends the "
+ "com.google.gwt.user.client.ui.SimplePanel class and implements four interfaces. It ←↩

is a simple panel"
+ " that wraps its contents in a scrollable area. GWT also allows users to create ←↩

their own custom"
+ " scrollable panels using the CustomScrollPanel class. This class extends the ←↩

ScrollPanel class."
+ " This class allows users to provide their own scrollbars. The position of the ←↩

scrollbar in the"
+ " CustomScrollPanel differs from that of the native scrollable element. In the ←↩

native element,"
+ " scrollbars appear adjacent to the content,shrinking the content client height and ←↩

width when they"
+ " appear. CustomeScrollPanel overlays scrollbars on top of the content, so the ←↩

content does not change"
+ " the size when the scrollbars appear. If the scrollbars obscure the content, you ←↩

can set the padding-top"
+ " and padding-bottom attribute.");

ScrollPanel scrollPanel = new ScrollPanel(contents);
scrollPanel.setSize("450px", "200px");

DecoratorPanel decoratorPanel = new DecoratorPanel();
decoratorPanel.add(scrollPanel);

RootPanel.get("container").add(decoratorPanel);
}

}

7.4 Compile

To compile the application right click on the project and select ‘Google’ =⇒ ‘GWT Compile’. You will get a pop-up showing
the project name. Click on the ‘Compile’ button. GWT will start compiling the project.

GWT Programming Cookbook 80 / 100

7.5 Running the application

To run the application right click on the project and select Run As⇒Web Application (GWT Classic Dev Mode). Eclipse will use
the inbuild Jetty server to load the application. Once the application is up and running the focus will transfer to the Development
Mode tab where a URL will be displayed - https://127.0.0.1:8888/GWTScrollPanel.html?gwt.codesvr=127.0.0.1:9997. Copy the
URL and paste in your favorite browser. Remove the part after .html and press enter. You will see a screen like below.

Figure 7.3: Run

7.6 Custom Scroll Panel

GWT also allows users to create their own custom scrollable panels using the CustomScrollPanel class. This class extends
the ScrollPanel class. This class allows users to provide their own scrollbars. The position of the scrollbar in the Cust
omScrollPanel differs from that of the native scrollable element. In the native element, scrollbars appear adjacent to the
content,shrinking the content client height and width when they appear. CustomeScrollPanel overlays scrollbars on top of
the content, so the content does not change the size when the scrollbars appear. If the scrollbars obscure the content, you can set
the padding-top and padding-bottom attribute.

Unlike ScrollPanel, which implements RequiresResize but doesn’t really require it, CustomScrollPanel actually
does require resize and should only be added to a panel that implements ProvidesResize, such as most layout panels and
ResizeLayoutPanel.

https://127.0.0.1:8888/GWTScrollPanel.html?gwt.codesvr=127.0.0.1:9997

GWT Programming Cookbook 81 / 100

7.7 Download the source file

This was an example of GWT Scroll Panel.

Download

You can download the full source code of this example here : GWT Scroll Panel Example

https://examples.javacodegeeks.com/wp-content/uploads/2016/01/GWTScrollPanel.zip

GWT Programming Cookbook 82 / 100

Chapter 8

GWT Calendar Example

In this example we will learn how to use Calendar in GWT. The Google Web Toolkit is a development framework for creating
Ajax-enabled web applications in Java. Tools and technologies used in this example are Java 1.8, Eclipse Luna 4.4.2, Eclipse
GWT Plugin 2.6

8.1 Creating GWT project

To create a new GWT project go to File→New→Other, then type ‘Web App’. Choose ‘Web Application Project’ under ‘Google’.

GWT Programming Cookbook 83 / 100

Figure 8.1: Create New Web Application

On the next window enter the Project name (‘GWTCalendar’) and the Package (com.javacodegeeks). Leave the other details as
it is and click on ‘Finish’. Eclipse will generate some files automatically for you.

GWT Programming Cookbook 84 / 100

Figure 8.2: Create Project

GWT Programming Cookbook 85 / 100

8.2 Setup

Add the gwt-cal.jar file to the project’s build path. Right-click on the project node in the Package Explorer and select Build Path
> Configure Build Path > Add External JARs. Specify the downloaded gwt-cal-<version>.jar. Modify GWTCalendar.gwt.xml to
inherit the gwt-cal module and theme:

<inherits name=’com.bradrydzewski.gwt.calendar.Calendar’ />
<inherits name=’com.bradrydzewski.gwt.calendar.theme.google.Google’ />

Add the gwt-dnd jar as well.

<inherits name=’com.allen_sauer.gwt.dnd.gwt-dnd’/>

Below is the GWT configuration file:

GWTCalendar.gwt.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE module PUBLIC "-//Google Inc.//DTD Google Web Toolkit 2.6.0//EN"
"https://google-web-toolkit.googlecode.com/svn/tags/2.6.0/distro-source/core/src/gwt-module ←↩

.dtd">
<module rename-to=’gwtcalendar’>

<inherits name=’com.google.gwt.user.User’/>
<inherits name=’com.bradrydzewski.gwt.calendar.Calendar’ />
<inherits name=’com.bradrydzewski.gwt.calendar.theme.google.Google’ />
<inherits name=’com.allen_sauer.gwt.dnd.gwt-dnd’/>

<set-property name="user.agent" value="safari"/>
<inherits name=’com.google.gwt.user.theme.clean.Clean’/>

<!-- Specify the app entry point class. -->
<entry-point class=’com.javacodegeeks.client.GWTCalendar’/>

<source path=’client’/>
<source path=’shared’/>

<!-- allow Super Dev Mode -->
<add-linker name="xsiframe"/>

</module>

8.3 Add widget

To the the Calendar widget modify the GWTCalendar class to add the code below:

Calendar calendar = new Calendar();
calendar.setDate(new Date());
calendar.setDays(5); //number of days displayed at a time
calendar.setWidth("400px");
calendar.setHeight("400px");
RootPanel.get("calendarContainer").add(calendar);

Below is the Entry class:

GWTCalendar.java

package com.javacodegeeks.client;

import java.util.Date;

GWT Programming Cookbook 86 / 100

import com.bradrydzewski.gwt.calendar.client.Calendar;
import com.google.gwt.core.client.EntryPoint;
import com.google.gwt.user.client.ui.RootPanel;

/**
* Entry point classes define <code>onModuleLoad()</code>.

*/
public class GWTCalendar implements EntryPoint {

/**
* This is the entry point method.

*/
public void onModuleLoad() {

Calendar calendar = new Calendar();
calendar.setDate(new Date());
calendar.setDays(5); //number of days displayed at a time
calendar.setWidth("400px");
calendar.setHeight("400px");
RootPanel.get("calendarContainer").add(calendar);

}
}

8.4 Compile

To compile the application right click on the project and select ‘Google’ =⇒ ‘GWT Compile’. You will get a pop-up showing
the project name. Click on the ‘Compile’ button. GWT will start compiling the project. To reduce the number of permutation
you can add the below property in your GWTCalendar.gwt.xml:

<set-property name="user.agent" value="safari"/>

Your permutations will decrease from 55 to 11.

8.5 Running the application

To run the application right click on the project and select "Run As" =⇒ "Web Application (Classic Dev Mode)". Eclipse will
display a URL in the "Development Mode" tab. Copy this URL and paste it on you favourite browser. Remove the part after
".html" and click enter.

GWT Programming Cookbook 87 / 100

Figure 8.3: Run

8.6 Download the source file

This was an example of GWT Calendar.

Download

You can download the full source code of this example here: GWTCalendar. Please note that the jar files from the lib folder has
been removed to save some space.

https://examples.javacodegeeks.com/wp-content/uploads/2015/12/GWTCalendar.zip

GWT Programming Cookbook 88 / 100

Chapter 9

GWT Dialogbox Example

In this tutorial, we will look into the details of Google Web Toolkit (GWT) Dialog Box. In our previous tutorials GWT Tutorial
for Beginners, we explained how to create a GWT Web Application project using eclipse and we have seen the basic steps to
develop user interface using widgets. GWT Panel Example and GWT HTMLPanel Example are related tutorial that covers GWT
Panels in details. In this tutorial, we will focus on GWT DialogBox and it’s usage to develop user interface.

Here we are using GWT 2.7 integrated with Eclipse Mars 4.5.

9.1 Introduction

As per the GWT Javadoc, "GWT Dialogbox is a form of popup that has a caption area at the top and can be dragged by the
user. Unlike a PopupPanel, calls to PopupPanel.setWidth(String) and PopupPanel.setHeight(String) will set the width and height
of the dialog box itself, even if a widget has not been added as yet." GWT Dialogbox provides a way to show more interactive
pop-up through which the user can provide input to the application.

To learn how DialogBox can be used in application, we will create customised widgets using GWT Dialogbox.

9.2 Class Declaration

DialogBox.class

public class DialogBox extends DecoratedPopupPanel implements HasHTML,
HasSafeHtml, MouseListener {

...
}

DialogBox inherits the property of DecoratedPopupPanel and PopupPanel consecutively. The PopupPanel over-
lays the browser’s client area and pop-up over other widgets.

9.3 Constructors

9.3.1 DialogBox()

Creates an empty dialog box with auto-hide property set as false. This means the dialog should not be automatically hidden when
the user clicks outside of it.

https://examples.javacodegeeks.com/enterprise-java/gwt/gwt-tutorial-beginners/
https://examples.javacodegeeks.com/enterprise-java/gwt/gwt-tutorial-beginners/
https://examples.javacodegeeks.com/enterprise-java/gwt/gwt-panel-example/
https://examples.javacodegeeks.com/enterprise-java/gwt/gwt-htmlpanel-example/
https://www.gwtproject.org/versions.html
https://eclipse.org/mars/

GWT Programming Cookbook 89 / 100

9.3.2 DialogBox(boolean autoHide)

Creates an empty dialog box specifying its auto-hide property.

9.3.3 DialogBox(Caption captionWidget)

Creates an empty dialog box specifying its caption. Caption is the widget that renders as the DialogBox’s header.

9.3.4 DialogBox(boolean autoHide, boolean modal)

Creates an empty dialog box specifying its auto-hide and modal properties. If modal property is defines as true, keyboard and
mouse events for widgets will not be contained by the dialog and should be ignored.

9.3.5 DialogBox(boolean autoHide, boolean modal, Caption captionWidget)

Creates an empty dialog box specifying its auto-hide, modal properties and an custom Caption widget.

9.4 Method Summary

Method Signature Description
public void show() Shows the popup and attach it to the page. It must has a

child widget before this method is called.
public void hide(boolean autoClosed) Hides the popup and detaches it from the page. This has no

effect if it is not currently showing.
public void setWidget(Widget w) Sets this panel’s widget. Any existing child widget will be

removed.
public void setAnimationEnabled(boolean enable) Enable or disable animations(instead of immediate).
public void setPopupPosition(int left, int top) Sets the popup’s position relative to the browser’s client

area.
public void setText(String text) Sets the text inside the caption.
public void setHTML(String html) Sets the html string inside the caption.
public Caption getCaption() Provides access to the dialog’s caption..

9.5 Examples

9.5.1 Custom Dialogbox Example 1

Custom Dialogbox appears on click of button "Dialogbox". Auto-hide property of the dialogbox is based on the first parameter
passed while initializing the dialog box. The Close button on Dialogbox is visible only if the auto-hide property is disabled.

SampleWebApplication.java

/**
* This is the entry point method.

*/
public void onModuleLoad() {

VerticalPanel verticalPanel = new VerticalPanel();
verticalPanel.setSpacing(10);
verticalPanel.setBorderWidth(1);
verticalPanel.setSize("100%", "100%");
verticalPanel.setHorizontalAlignment(HasHorizontalAlignment.ALIGN_CENTER);
verticalPanel.setVerticalAlignment(HasVerticalAlignment.ALIGN_MIDDLE);

GWT Programming Cookbook 90 / 100

// The log in button
Button submit = new Button("DialogBox");
verticalPanel.add(submit);
submit.addClickHandler(new ClickHandler() {

@Override
public void onClick(ClickEvent event) {

// Add validation
showCustomDialog();

}
});

// Add our panel to the page
RootLayoutPanel.get().add(verticalPanel);

}
/**
* Draws Custom Dialog box.

* @return DialogBox

*/
private DialogBox showCustomDialog() {

final DialogBox dialog = new DialogBox(false, true);
// final DialogBox dialog = new DialogBox(true, true);
// Set caption
dialog.setText("DialogBox Caption");
// Setcontent
Label content = new Label("This is sample text message inside "

+ "Customized Dialogbox. In this example a Label is "
+ "added inside the Dialogbox, whereas any custom widget "
+ "can be added inside Dialogbox as per application’ser’s need. ");

if (dialog.isAutoHideEnabled()) {
dialog.setWidget(content);

} else {
VerticalPanel vPanel = new VerticalPanel();vPanel.setSpacing(2);
vPanel.add(content);vPanel.add(new Label("\n"));
vPanel.add(new Button("Close", new ClickHandler() {
public void onClick(ClickEvent event) {

dialog.hide();
}

}));
dialog.setWidget(vPanel);
}
dialog.setPopupPosition(100, 150);
dialog.show();
return dialog;

}

Output:

GWT Programming Cookbook 91 / 100

Figure 9.1: Custom Dialogbox Example

After enabling auto-hide property for Dialogbox (Refer line no. 32 in Custom Dialogbox Example 1).

Output:

GWT Programming Cookbook 92 / 100

Figure 9.2: Custom Dialogbox Example Auto-hide Enabled

9.5.2 Custom Dialogbox Example 2

In this example, a Dialogbox is customised by adding DockPanel as its child widget.

SampleWebApplication.java

/**
* This is the entry point method.

*/
public void onModuleLoad() {

GWT Programming Cookbook 93 / 100

Button btn= new Button("Dialogbox", new ClickHandler() {

@Override
public void onClick(ClickEvent event) {

DialogBox dlg = new CustomDialog();
dlg.center();

}
});
RootPanel.get().add(btn);

}
/**
* CustomDialog adds DockPanel as its child widget.

*/
class CustomDialog extends DialogBox implements ClickHandler {

public CustomDialog() {
super(true);
setText("Sample DialogBox");

Button closeButton = new Button("Close", this);
HTML msg = new HTML("A Custom dialog box.",true);

DockPanel dock = new DockPanel();
dock.setSpacing(6);
Image image = new Image();
image.setUrl("https://www.javacodegeeks.com/wp-content/uploads/2012/12/ ←↩

JavaCodeGeeks-logo.png");
dock.add(image, DockPanel.CENTER);
dock.add(closeButton, DockPanel.SOUTH);
dock.add(msg, DockPanel.NORTH);

dock.setCellHorizontalAlignment(closeButton, DockPanel.ALIGN_CENTER);
dock.setWidth("100%");
setWidget(dock);

}

@Override
public void onClick(ClickEvent event) {

hide();
}

}

Output:

Check Video Output

9.6 Project References

GWT UIPanels

GWT API Reference

9.7 Download Eclipse Project

Download

You can download the full source code of this example here: GWT DialogBox Examples

https://examples.javacodegeeks.com/wp-content/uploads/2016/08/Custom-Dialogbox-Example.mp4
https://www.gwtproject.org/doc/latest/DevGuideUiPanels.html
https://www.gwtproject.org/javadoc/latest/com/google/gwt/user/client/ui/HTMLPanel.html
https://examples.javacodegeeks.com/wp-content/uploads/2016/08/GWTDialogBoxExamples.zip

GWT Programming Cookbook 94 / 100

Chapter 10

GWT Dialogbox Example

In this example we will learn how to use Tables in GWT. Google Web Toolkit is a development framework for creating Ajax-
enabled web applications in Java. A CellTable represents a tabular view that supports paging and columns. A FlexTable
on the other hand allows user to create cell on demand. It can be jagged (that is, each row can contain a different number of
cells) and individual cells can be set to span multiple rows or columns. Tools and technologies used in this example are Java 1.8,
Eclipse Luna 4.4.2, Eclipse GWT Plugin 2.6

10.1 Introduction

A cell table (data presentation table) provides high-performance rendering of large data sets in a tabular view. A CellTable is
used to represent a data in tabular format. The Column class defines the Cell used to render a column. Implement Column.
getValue(Object) to retrieve the field value from the row object that will be rendered in the Cell. A Header can be placed
at the top (header) or bottom (footer) of the CellTable. You can specify a header as text using AbstractCellTable.
addColumn(Column, String), or you can create a custom Header that can change with the value of the cells, such as a
column total. The Header will be rendered every time the row data changes or the table is redrawn. If you pass the same header
instance (==) into adjacent columns, the header will span the columns.

The FlexTable class extends the HTMLTable. public class FlexTable extends HTMLTable

10.2 Creating GWT project

To create a new GWT project go to File→New→Other, then type ‘Web App’. Choose ‘Web Application Project’ under ‘Google’.

GWT Programming Cookbook 95 / 100

Figure 10.1: Create new Web Application Project

On the next window enter the Project name (‘GWTTable’) and the Package (com.javacodegeeks). Leave the other details as it is
and click on ‘Finish’. Eclipse will generate some files automatically for you.

GWT Programming Cookbook 96 / 100

Figure 10.2: Create Project

GWT Programming Cookbook 97 / 100

For this example we don’t need to change the GWT configuration file. We only need to change the Entry point class - ‘GWT-
Table.java’.

10.3 Java classes

First we show the model class which we are using for populating the data in the CellTable. It’s a simple POJO representation
of address data.

Address.java

package com.javacodegeeks.client;

public class Address {

private String firstLine;
private String secondLine;
private String town;
private String country;

public Address(String firstLine, String secondLine, String town, String country) {
this.firstLine = firstLine;
this.secondLine = secondLine;
this.town = town;
this.country = country;

}

public String getFirstLineOfAddress() {
return this.firstLine;

}

public String getSecondLineOfAddress() {
return this.secondLine;

}

public String getTown() {
return this.town;

}

public String getCountry() {
return this.country;

}
}

Now we will see the Entry point class.

GWTTable.java

package com.javacodegeeks.client;
import java.util.ArrayList;
import java.util.List;

import com.google.gwt.core.client.EntryPoint;
import com.google.gwt.user.cellview.client.CellTable;
import com.google.gwt.user.cellview.client.HasKeyboardSelectionPolicy. ←↩

KeyboardSelectionPolicy;
import com.google.gwt.user.cellview.client.TextColumn;
import com.google.gwt.user.client.Window;
import com.google.gwt.user.client.ui.FlexTable;
import com.google.gwt.user.client.ui.RootPanel;
import com.google.gwt.user.client.ui.VerticalPanel;
import com.google.gwt.view.client.SelectionChangeEvent;

GWT Programming Cookbook 98 / 100

import com.google.gwt.view.client.SingleSelectionModel;

/**
* Entry point classes define <code>onModuleLoad()</code>.

*/
public class GWTTable implements EntryPoint {

/**
* This is the entry point method.

*/
public void onModuleLoad() {
FlexTable flexTable = createFlexTable();

CellTable<Address> cellTableOfAddress = new CellTable<Address>();
// The policy that determines how keyboard selection will work. Keyboard
// selection is enabled.
cellTableOfAddress.setKeyboardSelectionPolicy(KeyboardSelectionPolicy.ENABLED);

// Add a text columns to show the details.
TextColumn<Address> columnFirstLine = new TextColumn<Address>() {

@Override
public String getValue(Address object) {

return object.getFirstLineOfAddress();
}

};
cellTableOfAddress.addColumn(columnFirstLine, "First line");

TextColumn<Address> columnSecondLine = new TextColumn<Address>() {
@Override
public String getValue(Address object) {

return object.getSecondLineOfAddress();
}

};
cellTableOfAddress.addColumn(columnSecondLine, "Second line");

TextColumn<Address> townColumn = new TextColumn<Address>() {
@Override
public String getValue(Address object) {

return object.getTown();
}

};
cellTableOfAddress.addColumn(townColumn, "Town");

TextColumn<Address> countryColumn = new TextColumn<Address>() {
@Override
public String getValue(Address object) {

return object.getCountry();
}

};
cellTableOfAddress.addColumn(countryColumn, "Country");

final SingleSelectionModel<Address> selectionModel = new SingleSelectionModel<Address ←↩
>();

cellTableOfAddress.setSelectionModel(selectionModel);
selectionModel.addSelectionChangeHandler(new SelectionChangeEvent.Handler() {

public void onSelectionChange(SelectionChangeEvent event) {

Address selectedAddress = selectionModel.getSelectedObject();
if (selectedAddress != null) {
Window.alert("Selected: First line: " + selectedAddress.getFirstLineOfAddress() + ←↩

", Second line: " + selectedAddress.getSecondLineOfAddress());

GWT Programming Cookbook 99 / 100

}
}

});

List<Address> addresses = new ArrayList<Address>() {
{

add(new Address("Cell Table", "First line", "Oxford", "UK"));
add(new Address("Cell Table", "Second line", "Cambrige", "UK"));

}
};

cellTableOfAddress.setRowCount(addresses.size(), true);
cellTableOfAddress.setRowData(0, addresses);

VerticalPanel vp = new VerticalPanel();
vp.setBorderWidth(1);
vp.add(flexTable);
vp.add(cellTableOfAddress);

RootPanel.get("container").add(vp);
}

private FlexTable createFlexTable() {
FlexTable flexTable = new FlexTable();
flexTable.setBorderWidth(1);
flexTable.setText(0, 0, "This is an example of flextable");
flexTable.setText(2, 2, "This is also an example of flextable");
flexTable.getFlexCellFormatter().setColSpan(1, 0, 3);
return flexTable;

}
}

10.4 Difference

Here we will discuss the differences between these two GWT table types.

CellTable always has the same number of rows and/or columns while a FlexTable can have different rows per column and
different columns per row (This is made possible due to the html properties rowspan and colspan). Thus when you need flexibale
rows or columns you can use FlexTable and otherwise CellTable. However, FlexTable is extremely slow in Internet
Explorer, due to slow DOM methods that are used to create a the table. Therefore, avoid FlexTable if you can or only use it create
a simple layout (although in that case the DockPanel might be somewhat easier to use).

10.5 Compile

To compile the application right click on the project and select ‘Google’ =⇒ ‘GWT Compile’. A popu-up will be displayed.
Click the Compile button. GWT will start compiling your projects for different permutations. Below is the result of compilation
which you see in the Console window.

Compiling module com.javacodegeeks.GWTTable
Compiling 5 permutations
Compiling permutation 0...
Compiling permutation 1...
Compiling permutation 2...
Compiling permutation 3...
Compiling permutation 4...

Compile of permutations succeeded
Linking into E:\meraj\study\eclipse-workspace\GWTTable\war\gwttable

GWT Programming Cookbook 100 / 100

Link succeeded
Compilation succeeded -- 95.073s

10.6 Running the application

To run the application right click on the project and select "Run As" =⇒ "Web Application (Classic Dev Mode)". Eclipse will
display a URL in the "Development Mode" tab. Copy this URL and paste it on you favourite browser. Remove the part after
".html" and click enter.

Figure 10.3: Output

10.7 Download the source file

This was an example of GWT Tables.

Download

You can download the full source code of this example here: GWT Table. Please note that to save space the jar files from the lib
directly have been removed.

https://examples.javacodegeeks.com/wp-content/uploads/2016/02/GWTTable.zip

	GWT Tutorial for Beginners
	Overview
	Sample Web Application using GWT
	Download Eclipse, install Google plugin and GWT SDK
	Steps to install Eclipse plugin for GWT development
	Creating Sample Web Application in GWT
	Create a new project using GWT Development toolkit
	GWT Web Application Project Structure

	Debugging GWT Web Application
	Project References
	Conclusion
	Download Eclipse Project

	GWT Sample Application Example
	Introduction
	GWT SDK
	Installing Eclipse GWT Plugin
	Creating GWT project
	Development Mode
	Testing the default project configuration
	Project components
	GWT Configuration file
	Landing page
	Stylesheet
	Java code

	Download the source file

	GWT Interview Questions and Answers
	What is GWT?
	What is a module descriptor in GWT application?
	What is a GWT Module?
	What is an entry point class?
	Which method of the Entry point class is called when the GWT application is loaded? What happens if there are multiple Entry point classes?
	How do I enable assertions?
	What is the default style name of any GWT widget?
	What is internationalization?
	What is the difference between TextResource and ExternalTextResource
	How can you set Browser targeted Compilation in GWT?
	Why doesn't GWT provide a synchronous server connection option?
	What is GWT ClientBundle?
	What is DataResource in GWT?
	How to create custom widgets in GWT?
	What is a UiBinder?
	What is the Same Origin Policy, and how does it affect GWT?
	Which class is the superclass of all UI widgets?
	What is GWT RPC
	What are Layout Panels?
	How is GWT different from other frameworks?
	What are the features of GWT
	What can I do to make images and borders appear to load more quickly the first time they are used?
	What is Deferred Binding?
	How do I create an app that fills the page vertically when the browser window resizes?
	How do you make a call to the server if you are not using GWT RPC?
	How can I dynamically fetch JSON feeds from other web domains?
	Conclusion

	GWT AsyncCallback Example
	Introduction
	GWT RPC Mechanism
	Creating Service
	Define service Interface
	Define Async Service Interface
	Implementing AsynchCallback and handling its Failure

	Implementing Service
	Define Service Interface Implementation
	Update entry of Service inside web.xml

	Example
	Project References
	Download Eclipse Project

	GWT Panel Example
	Overview
	Introduction
	Layout of a GWT Web Application UI
	Basic Panels
	RootPanel
	FlowPanel
	HTMLPanel
	FormPanel
	ScrollPanel
	Grid
	FlexTable

	LayoutPanels
	RootLayoutPanel
	DockLayoutPanel
	SplitLayoutPanel
	StackLayoutPanel
	TabLayoutPanel

	Project References
	Download Eclipse Project

	GWT HTMLPanel Example
	Introduction
	Class Declaration
	Constructors
	HTMLPanel(String html)
	HTMLPanel(SafeHtml safeHtml)
	HTMLPanel(String tag, String html)

	Method Summary
	Examples
	Login Page using HTMLPanel
	Error Dialog Page using HTMLPanel

	Project References
	Download Eclipse Project

	GWT Scroll Panel Example
	Introduction
	Constructors

	Creating GWT project
	Entry point class
	Compile
	Running the application
	Custom Scroll Panel
	Download the source file

	GWT Calendar Example
	Creating GWT project
	Setup
	Add widget
	Compile
	Running the application
	Download the source file

	GWT Dialogbox Example
	Introduction
	Class Declaration
	Constructors
	DialogBox()
	DialogBox(boolean autoHide)
	DialogBox(Caption captionWidget)
	DialogBox(boolean autoHide, boolean modal)
	DialogBox(boolean autoHide, boolean modal, Caption captionWidget)

	Method Summary
	Examples
	Custom Dialogbox Example 1
	Custom Dialogbox Example 2

	Project References
	Download Eclipse Project

	GWT Dialogbox Example
	Introduction
	Creating GWT project
	Java classes
	Difference
	Compile
	Running the application
	Download the source file

