About Jaibeer Malik

Jaibeer is an experienced Java Software Architect and Agile enthusiast with a passion for new technologies, clean code and agile development.

ElasticSearch-Hadoop: Indexing product views count and customer top search query from Hadoop to ElasticSearch

This post covers to use ElasticSearch-Hadoop to read data from Hadoop system and index that in ElasticSearch. The functionality it covers is to index product views count and top search query per customer in last n number of days. The analyzed data can further be used on website to display customer recently viewed, product views count and top search query string.

In continuation to the previous posts on

We already have customer search clicks data gathered using Flume and stored in Hadoop HDFS and ElasticSearch, and how to analyze same data using Hive and generate statistical data. Here we will further see how to use the analyzed data to enhance customer experience on website and make it relevant for the end customers.

Recently Viewed Items

We already have covered in first part, how we can use flume ElasticSearch sink to index the recently viewed items directory to ElasticSearch instance and the data can be used to display real time clicked items for the customer.

ElasticSearch-Hadoop

Elasticsearch for Apache Hadoop allows Hadoop jobs to interact with ElasticSearch with small library and easy setup.

Elasticsearch-hadoop-hive, allows to access ElasticSearch using Hive. As shared in previous post, we have product views count and also customer top search query data extracted in Hive tables. We will read and index the same data to ElasticSearch so that it can be used for display purpose on website.

elasticsearch-hadoop-hive

Product views count functionality

Take a scenario to display each product total views by customer in the last n number of days. For better user experience, you can use the same functionality to display to end customer how other customer perceive the same product.

Hive Data for product views

Select sample data from hive table:

# search.search_productviews : id, productid, viewcount
61, 61, 15
48, 48, 8
16, 16, 40
85, 85, 7

Product Views Count Indexing

Create Hive external table “search_productviews_to_es” to index data to ElasticSearch instance.

Use search;
DROP TABLE IF EXISTS search_productviews_to_es;
CREATE EXTERNAL TABLE search_productviews_to_es (id STRING, productid BIGINT, viewcount INT) STORED BY 'org.elasticsearch.hadoop.hive.EsStorageHandler' TBLPROPERTIES('es.resource' = 'productviews/productview', 'es.nodes' = 'localhost', 'es.port' = '9210', 'es.input.json' = 'false', 'es.write.operation' = 'index', 'es.mapping.id' = 'id', 'es.index.auto.create' = 'yes');
INSERT OVERWRITE TABLE search_productviews_to_es SELECT qcust.id, qcust.productid, qcust.viewcount FROM search_productviews qcust;
  •  External table search_productviews_to_es is created points to ES instance
  •  ElasticSearch instance configration used is localhost:9210
  •  Index “productviews” and document type “productview” will be used to index data
  •  Index and mappins will automatically created if it does not exist
  •  Insert overwrite will override the data if it already exists based on id field.
  •  Data is inserting by selecting data from another hive table “search_productviews” storing analytic/statistical data.

Execute the hive script in java to index product views data, HiveSearchClicksServiceImpl.java

Collection<HiveScript> scripts = new ArrayList<>();
			HiveScript script = new HiveScript(new ClassPathResource("hive/load-search_productviews_to_es.q"));
			scripts.add(script);
			hiveRunner.setScripts(scripts);
			hiveRunner.call();

productviews index sample data

The sample data in ElasticSearch index is stored as below:

{id=48, productid=48, viewcount=10}
{id=49, productid=49, viewcount=20}
{id=5, productid=5, viewcount=18}
{id=6, productid=6, viewcount=9}

Customer top search query string functionality

Take a scenario, where you may want to display top search query string by a single customer or all the customers on the website. You can use the same to display top search query cloud on the website.

Hive Data for customer top search queries

Select sample data from hive table:

# search.search_customerquery : id, querystring, count, customerid
61_queryString59, queryString59, 5, 61
298_queryString48, queryString48, 3, 298
440_queryString16, queryString16, 1, 440
47_queryString85, queryString85, 1, 47

Customer Top search queries Indexing

Create Hive external table “search_customerquery_to_es” to index data to ElasticSearch instance.

Use search;
DROP TABLE IF EXISTS search_customerquery_to_es;
CREATE EXTERNAL TABLE search_customerquery_to_es (id String, customerid BIGINT, querystring String, querycount INT) STORED BY 'org.elasticsearch.hadoop.hive.EsStorageHandler' TBLPROPERTIES('es.resource' = 'topqueries/custquery', 'es.nodes' = 'localhost', 'es.port' = '9210', 'es.input.json' = 'false', 'es.write.operation' = 'index', 'es.mapping.id' = 'id', 'es.index.auto.create' = 'yes');
INSERT OVERWRITE TABLE search_customerquery_to_es SELECT qcust.id, qcust.customerid, qcust.queryString, qcust.querycount FROM search_customerquery qcust;
  •  External table search_customerquery_to_es is created points to ES instance
  •  ElasticSearch instance configration used is localhost:9210
  •  Index “topqueries” and document type “custquery” will be used to index data
  •  Index and mappins will automatically created if it does not exist
  •  Insert overwrite will override the data if it already exists based on id field.
  •  Data is inserting by selecting data from another hive table “search_customerquery” storing analytic/statistical data.

Execute the hive script in java to index data HiveSearchClicksServiceImpl.java

Collection<HiveScript> scripts = new ArrayList<>();
			HiveScript script = new HiveScript(new ClassPathResource("hive/load-search_customerquery_to_es.q"));
			scripts.add(script);
			hiveRunner.setScripts(scripts);
			hiveRunner.call();

topqueries index sample data

The topqueries index data on ElasticSearch instance is as shown below:

{id=474_queryString95, querystring=queryString95, querycount=10, customerid=474}
{id=482_queryString43, querystring=queryString43, querycount=5, customerid=482}
{id=482_queryString64, querystring=queryString64, querycount=7, customerid=482}
{id=483_queryString6, querystring=queryString6, querycount=2, customerid=483}
{id=487_queryString86, querystring=queryString86, querycount=111, customerid=487}
{id=494_queryString67, querystring=queryString67, querycount=1, customerid=494}

The functionality described above is only sample functionality and ofcourse need to be extended to map to specific business scenario. This may cover business scenario of displaying search query cloud to customers on website or for further Business Intelligence analytics.

Spring Data

Spring ElasticSearch for testing purpose has also been included to create ESRepository to count total records and delete All.
Check the service for details, ElasticSearchRepoServiceImpl.java

Total product views:

@Document(indexName = "productviews", type = "productview", indexStoreType = "fs", shards = 1, replicas = 0, refreshInterval = "-1")
public class ProductView {
	@Id
	private String id;
	@Version
	private Long version;
	private Long productId;
	private int viewCount;
	...
	...
	}

public interface ProductViewElasticsearchRepository extends ElasticsearchCrudRepository<ProductView, String> { }

long count = productViewElasticsearchRepository.count();

Customer top search queries:

@Document(indexName = "topqueries", type = "custquery", indexStoreType = "fs", shards = 1, replicas = 0, refreshInterval = "-1")
public class CustomerTopQuery {
	@Id
	private String id;
	@Version
	private Long version;
	private Long customerId;
	private String queryString;
	private int count;
	...
	...
	}

public interface TopQueryElasticsearchRepository extends ElasticsearchCrudRepository<CustomerTopQuery, String> { }

long count = topQueryElasticsearchRepository.count();

In later posts we will cover to analyze the data further using scheduled jobs,

  • Using Oozie to schedule coordinated jobs for hive partition and bundle job to index data to ElasticSearch.
  • Using Pig to count total number of unique customers etc.

Do you want to know how to develop your skillset to become a Java Rockstar?

Subscribe to our newsletter to start Rocking right now!

To get you started we give you two of our best selling eBooks for FREE!

JPA Mini Book

Learn how to leverage the power of JPA in order to create robust and flexible Java applications. With this Mini Book, you will get introduced to JPA and smoothly transition to more advanced concepts.

JVM Troubleshooting Guide

The Java virtual machine is really the foundation of any Java EE platform. Learn how to master it with this advanced guide!

Given email address is already subscribed, thank you!
Oops. Something went wrong. Please try again later.
Please provide a valid email address.
Thank you, your sign-up request was successful! Please check your e-mail inbox.
Please complete the CAPTCHA.
Please fill in the required fields.

Leave a Reply


two + 5 =



Java Code Geeks and all content copyright © 2010-2014, Exelixis Media Ltd | Terms of Use | Privacy Policy | Contact
All trademarks and registered trademarks appearing on Java Code Geeks are the property of their respective owners.
Java is a trademark or registered trademark of Oracle Corporation in the United States and other countries.
Java Code Geeks is not connected to Oracle Corporation and is not sponsored by Oracle Corporation.
Do you want to know how to develop your skillset and become a ...
Java Rockstar?

Subscribe to our newsletter to start Rocking right now!

To get you started we give you two of our best selling eBooks for FREE!

Get ready to Rock!
You can download the complementary eBooks using the links below:
Close