About Ashwini Kuntamukkala

Ashwini is an open source, cloud and mobile development enthusiast. He has over 10 years of experience in leading and implementing several enterprise grade solutions in pharmacy, health care and travel industries.

ActiveMQ – Network of Brokers Explained – Part 3

Now that we have understood the basics of ActiveMQ network connector in part 1 and part 2 of this blog series, in this part 3, we will examine how ActiveMQ load balances consumers which connect to a network of brokers.

Introduction

Concurrent consumers are used when messages in a queue can be processed out of order and usually to improve message throughput. ActiveMQ broker dispatches messages in a round-robin fashion among the consumers in order to load balance message consumption across concurrent consumers unless the consumer is specified as exclusive.

Let’s see the following example where three consumers are concurrently processing messages from queue foo.bar. A producer enqueues 60 messages which are processed by three consumers (20 each) in a round robin fashion.

Concurrent Consumers - New Page

Start three concurrent consumers on queue foo.bar

Ashwinis-MacBook-Pro:example akuntamukkala$ pwd
/Users/akuntamukkala/apache-activemq-5.8.0/example
Ashwinis-MacBook-Pro:example akuntamukkala$ ant consumer -Durl=tcp://localhost:61616 -Dtopic=false -Dsubject=foo.bar -DparallelThreads=3 -Dmax=20

Produce 60 messages

Ashwinis-MacBook-Pro:example akuntamukkala$ ant producer -Durl=tcp://localhost:61616 -Dtopic=false -Dsubject=foo.bar -Dmax=60

The following screenshot shows 3 consumers processing messages from queue foo.bar. 60 messages were enqueued and dequeued.

broker-1-60msgs-concurrent-consumers

As shown below 20 messages were processed by each of the consumers.

broker-1-cc-60msgs

The following excerpt from log shows that messages are divvied out among three consumers…

[Thread-3] Received: 'Message: 1 sent at: Tue Mar 04 13:46:53 IST 2014  ...' (length 1000)

[Thread-2] Received: 'Message: 0 sent at: Tue Mar 04 13:46:53 IST 2014  ...' (length 1000)

[Thread-1] Received: 'Message: 2 sent at: Tue Mar 04 13:46:53 IST 2014  ...' (length 1000)

[Thread-3] Received: 'Message: 4 sent at: Tue Mar 04 13:46:53 IST 2014  ...' (length 1000)

[Thread-2] Received: 'Message: 3 sent at: Tue Mar 04 13:46:53 IST 2014  ...' (length 1000)

[Thread-1] Received: 'Message: 5 sent at: Tue Mar 04 13:46:53 IST 2014  ...' (length 1000)

[Thread-3] Received: 'Message: 7 sent at: Tue Mar 04 13:46:53 IST 2014  ...' (length 1000)

[Thread-2] Received: 'Message: 6 sent at: Tue Mar 04 13:46:53 IST 2014  ...' (length 1000)

[Thread-1] Received: 'Message: 8 sent at: Tue Mar 04 13:46:53 IST 2014  ...' (length 1000)

[Thread-3] Received: 'Message: 10 sent at: Tue Mar 04 13:46:53 IST 2014 ...' (length 1000)

Now that we have seen how concurrent consumers work on a single broker, we will now examine how they work when consumers are spread across network of brokers.

Local Vs Remote Consumers

Let’s explore how ActiveMQ handles local and remote consumers with the help of a configuration shown in the figure below.

local-remote-consumers

Consumer-1 and Consumer-2 consume messages from queue foo.bar on Broker-1 and Broker-2 respectively. Broker-1 established a network connector to Broker-2 to forward queue messages. Producer enqueues messages into queue foo.bar on Broker-1

Let’s see this in action

  • Edit Broker-1′s configuration /Users/akuntamukkala/apache-activemq-5.8.0/bridge-demo/broker-1/conf/activemq.xml and open a network connector to Broker-2 and restart Broker-1 and Broker-2
<networkConnectors>
                <networkConnector
                        name="T:broker1->broker2"
                        uri="static:(tcp://localhost:61626)"
                        duplex="false"
                        decreaseNetworkConsumerPriority="false"
                        networkTTL="2"
                        dynamicOnly="true">
                        <excludedDestinations>
                                <queue physicalName=">" />
                        </excludedDestinations>
                </networkConnector>
                <networkConnector
                        name="Q:broker1->broker2"
                        uri="static:(tcp://localhost:61626)"
                        duplex="false"
                        decreaseNetworkConsumerPriority="false"
                        networkTTL="2"
                        dynamicOnly="true">
                        <excludedDestinations>
                                <topic physicalName=">" />
                        </excludedDestinations>
                </networkConnector>
        </networkConnectors>
  • Start local consumer, Consumer-1
Ashwinis-MacBook-Pro:example akuntamukkala$ ant consumer -Durl=tcp://localhost:61616 -Dtopic=false -Dsubject=foo.bar
  • Start remote consumer, Consumer-2
Ashwinis-MacBook-Pro:example akuntamukkala$ ant consumer -Durl=tcp://localhost:61626 -Dtopic=false -Dsubject=foo.bar
  • Start producer on Broker-1 to enqueue 100 messages
Ashwinis-MacBook-Pro:example akuntamukkala$ ant producer -Durl=tcp://localhost:61616 -Dtopic=false -Dsubject=foo.bar -Dmax=100

Screenshot showing Broker-1′s queues:

broker-1-cc-100ed

Let’s look at the consumers to see how the messages have been divvied out.

broker-1-localvsremote-equal

As you may notice, ActiveMQ broker dispatches the messages equally to local consumer over the remote consumer giving them the same priority.

The remote consumer, Consumer-2 is only broker 1 hop away which is less than configured networkTTL value of 2.

This leads to suboptimal routes especially when brokers are connected such that multiple routes are possible between producers and consumers. It is preferable to dispatch to local consumers over remote consumers in order to ensure shortest path between producers and consumers.

ActiveMQ provides a way to configure the priority between local consumer and remote consumer using the property
decreaseNetworkConsumerPriority on the network connector.

By default, this value is false and hence the local and remote brokers were treated alike.

If we repeat the above steps after changing the decreaseNetworkConsumerPriority=”true” then we find that local consumer, Consumer-1 is given preference over remote consumer, Consumer-2 which is 1 broker hop away.

broker-1-localvsremote
ActiveMQ intelligently figures out shortest path in a network of brokers between message producers and consumers.

Please read the following link to gain further understanding of optimal routing by ActiveMQ.

This concludes part 3 of this series where we saw how to differentiate local and remote consumers to assist ActiveMQ determine most optimal path between message producers and consumers.

As always your comments are very welcome.

Stay tuned for part 4 where we will go over load balancing remote concurrent consumers…

Related Whitepaper:

Functional Programming in Java: Harnessing the Power of Java 8 Lambda Expressions

Get ready to program in a whole new way!

Functional Programming in Java will help you quickly get on top of the new, essential Java 8 language features and the functional style that will change and improve your code. This short, targeted book will help you make the paradigm shift from the old imperative way to a less error-prone, more elegant, and concise coding style that’s also a breeze to parallelize. You’ll explore the syntax and semantics of lambda expressions, method and constructor references, and functional interfaces. You’ll design and write applications better using the new standards in Java 8 and the JDK.

Get it Now!  

Leave a Reply


2 + = eleven



Java Code Geeks and all content copyright © 2010-2014, Exelixis Media Ltd | Terms of Use | Privacy Policy
All trademarks and registered trademarks appearing on Java Code Geeks are the property of their respective owners.
Java is a trademark or registered trademark of Oracle Corporation in the United States and other countries.
Java Code Geeks is not connected to Oracle Corporation and is not sponsored by Oracle Corporation.

Sign up for our Newsletter

20,709 insiders are already enjoying weekly updates and complimentary whitepapers! Join them now to gain exclusive access to the latest news in the Java world, as well as insights about Android, Scala, Groovy and other related technologies.

As an extra bonus, by joining you will get our brand new e-books, published by Java Code Geeks and their JCG partners for your reading pleasure! Enter your info and stay on top of things,

  • Fresh trends
  • Cases and examples
  • Research and insights
  • Two complimentary e-books