Java FutureTask Example Program

Sometime back I wrote a post about Java Callable Future interfaces that we can use to get the concurrent processing benefits of threads as well as they are capable of returning value to the calling program.

FutureTask is base concrete implementation of Future interface and provides asynchronous processing. It contains the methods to start and cancel a task and also methods that can return the state of the FutureTask as whether it’s completed or cancelled. We need a callable object to create a future task and then we can use Java Thread Pool Executor to process these asynchronously.

Let’s see the example of FutureTask with a simple program.

Since FutureTask requires a callable object, we will create a simple Callable implementation.

package com.journaldev.threads;

import java.util.concurrent.Callable;

public class MyCallable implements Callable<String> {

	private long waitTime;

	public MyCallable(int timeInMillis){
		this.waitTime=timeInMillis;
	}
	@Override
	public String call() throws Exception {
		Thread.sleep(waitTime);
        //return the thread name executing this callable task
        return Thread.currentThread().getName();
	}

}

Here is an example of FutureTask method and it’s showing commonly used methods of FutureTask.

package com.journaldev.threads;

import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.FutureTask;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class FutureTaskExample {

	public static void main(String[] args) {
		MyCallable callable1 = new MyCallable(1000);
		MyCallable callable2 = new MyCallable(2000);

		FutureTask<String> futureTask1 = new FutureTask<String>(callable1);
		FutureTask<String> futureTask2 = new FutureTask<String>(callable2);

		ExecutorService executor = Executors.newFixedThreadPool(2);
		executor.execute(futureTask1);
		executor.execute(futureTask2);

		while (true) {
			try {
				if(futureTask1.isDone() && futureTask2.isDone()){
					System.out.println("Done");
					//shut down executor service
					executor.shutdown();
					return;
				}

				if(!futureTask1.isDone()){
				//wait indefinitely for future task to complete
				System.out.println("FutureTask1 output="+futureTask1.get());
				}

				System.out.println("Waiting for FutureTask2 to complete");
				String s = futureTask2.get(200L, TimeUnit.MILLISECONDS);
				if(s !=null){
					System.out.println("FutureTask2 output="+s);
				}
			} catch (InterruptedException | ExecutionException e) {
				e.printStackTrace();
			}catch(TimeoutException e){
				//do nothing
			}
		}

	}

}

When we run above program, you will notice that it doesn’t print anything for sometime because get() method of FutureTask waits for the task to get completed and then returns the output object. There is an overloaded method also to wait for only specified amount of time and we are using it for futureTask2. Also notice the use of isDone() method to make sure program gets terminated once all the tasks are executed.

Output of above program will be:

FutureTask1 output=pool-1-thread-1
Waiting for FutureTask2 to complete
Waiting for FutureTask2 to complete
Waiting for FutureTask2 to complete
Waiting for FutureTask2 to complete
Waiting for FutureTask2 to complete
FutureTask2 output=pool-1-thread-2
Done

As such there is no benefit of FutureTask but it comes handy when we want to override some of Future interface methods and don’t want to implement every method of Future interface.
 

Reference: Java FutureTask Example Program from our JCG partner Pankaj Kumar at the Developer Recipes blog.
Related Whitepaper:

Bulletproof Java Code: A Practical Strategy for Developing Functional, Reliable, and Secure Java Code

Use Java? If you do, you know that Java software can be used to drive application logic of Web services or Web applications. Perhaps you use it for desktop applications? Or, embedded devices? Whatever your use of Java code, functional errors are the enemy!

To combat this enemy, your team might already perform functional testing. Even so, you're taking significant risks if you have not yet implemented a comprehensive team-wide quality management strategy. Such a strategy alleviates reliability, security, and performance problems to ensure that your code is free of functionality errors.Read this article to learn about this simple four-step strategy that is proven to make Java code more reliable, more secure, and easier to maintain.

Get it Now!  

One Response to "Java FutureTask Example Program"

  1. cherrymaru says:

    thank u;

Leave a Reply


one + = 5



Java Code Geeks and all content copyright © 2010-2014, Exelixis Media Ltd | Terms of Use
All trademarks and registered trademarks appearing on Java Code Geeks are the property of their respective owners.
Java is a trademark or registered trademark of Oracle Corporation in the United States and other countries.
Java Code Geeks is not connected to Oracle Corporation and is not sponsored by Oracle Corporation.

Sign up for our Newsletter

15,153 insiders are already enjoying weekly updates and complimentary whitepapers! Join them now to gain exclusive access to the latest news in the Java world, as well as insights about Android, Scala, Groovy and other related technologies.

As an extra bonus, by joining you will get our brand new e-books, published by Java Code Geeks and their JCG partners for your reading pleasure! Enter your info and stay on top of things,

  • Fresh trends
  • Cases and examples
  • Research and insights
  • Two complimentary e-books